扁平化和简化的 SSCU-网络:探索医学图像分割的卷积潜力

Yuefei Wang, Yuquan Xu, Xi Yu, Ronghui Feng
{"title":"扁平化和简化的 SSCU-网络:探索医学图像分割的卷积潜力","authors":"Yuefei Wang, Yuquan Xu, Xi Yu, Ronghui Feng","doi":"10.1007/s11227-024-06357-6","DOIUrl":null,"url":null,"abstract":"<p>Medical image semantic segmentation is a crucial technique in medical imaging processing, providing essential diagnostic support by precisely delineating different tissue structures and pathological areas within an image. However, the pursuit of higher accuracy has led to increasingly complex architectures in existing networks, resulting in significant training overhead. In response, this study introduces a flattened, minimalist design philosophy and constructs the shallow super convolution U-shaped Net (SSCU-Net) based on this concept. Compared to the traditional four-layer U-shaped networks, SSCU-Net has a simplified two-layer structure, adhering to a lightweight research objective. On one hand, to address the issue of insufficient semantic feature extraction caused by the shallow network architecture, a parallel multi-branch feature extraction module called the super convolution block is designed to thoroughly extract diverse semantic information. On the other hand, to facilitate the transfer of critical semantic information between encoding and decoding, as well as across layers, the spatial convolution path, along with feature enhanced downsample and feature resolution upsample, are constructed. The performance of SSCU-Net was validated against 18 comparison models across seven metrics on five datasets. Results from metric analysis, image comparisons, and ablation tests collectively demonstrate that SSCU-Net achieves an average improvement of 15.9792% in the Dice coefficient compared to other models, confirming the model’s advantages in both lightweight design and accuracy. The network code is available at https://github.com/YF-W/SSCU-Net.</p>","PeriodicalId":501596,"journal":{"name":"The Journal of Supercomputing","volume":"189 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flattened and simplified SSCU-Net: exploring the convolution potential for medical image segmentation\",\"authors\":\"Yuefei Wang, Yuquan Xu, Xi Yu, Ronghui Feng\",\"doi\":\"10.1007/s11227-024-06357-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Medical image semantic segmentation is a crucial technique in medical imaging processing, providing essential diagnostic support by precisely delineating different tissue structures and pathological areas within an image. However, the pursuit of higher accuracy has led to increasingly complex architectures in existing networks, resulting in significant training overhead. In response, this study introduces a flattened, minimalist design philosophy and constructs the shallow super convolution U-shaped Net (SSCU-Net) based on this concept. Compared to the traditional four-layer U-shaped networks, SSCU-Net has a simplified two-layer structure, adhering to a lightweight research objective. On one hand, to address the issue of insufficient semantic feature extraction caused by the shallow network architecture, a parallel multi-branch feature extraction module called the super convolution block is designed to thoroughly extract diverse semantic information. On the other hand, to facilitate the transfer of critical semantic information between encoding and decoding, as well as across layers, the spatial convolution path, along with feature enhanced downsample and feature resolution upsample, are constructed. The performance of SSCU-Net was validated against 18 comparison models across seven metrics on five datasets. Results from metric analysis, image comparisons, and ablation tests collectively demonstrate that SSCU-Net achieves an average improvement of 15.9792% in the Dice coefficient compared to other models, confirming the model’s advantages in both lightweight design and accuracy. The network code is available at https://github.com/YF-W/SSCU-Net.</p>\",\"PeriodicalId\":501596,\"journal\":{\"name\":\"The Journal of Supercomputing\",\"volume\":\"189 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Supercomputing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11227-024-06357-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Supercomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11227-024-06357-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

医学图像语义分割是医学影像处理中的一项重要技术,通过精确划分图像中的不同组织结构和病理区域,为诊断提供重要支持。然而,为了追求更高的精确度,现有网络的架构越来越复杂,导致训练开销巨大。为此,本研究引入了扁平化、极简主义的设计理念,并在此基础上构建了浅层超卷积 U 型网(SSCU-Net)。与传统的四层 U 型网络相比,SSCU-Net 简化了两层结构,实现了轻量级的研究目标。一方面,针对浅层网络结构导致的语义特征提取不足的问题,设计了并行的多分支特征提取模块--超卷积块,以彻底提取多样化的语义信息。另一方面,为了促进关键语义信息在编码和解码之间以及跨层之间的传递,构建了空间卷积路径以及特征增强下采样和特征解析上采样。SSCU-Net 的性能在五个数据集上与 18 个对比模型进行了验证,涉及七个指标。指标分析、图像比较和消融测试的结果共同表明,与其他模型相比,SSCU-Net 的 Dice 系数平均提高了 15.9792%,证实了该模型在轻量级设计和准确性方面的优势。网络代码见 https://github.com/YF-W/SSCU-Net。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Flattened and simplified SSCU-Net: exploring the convolution potential for medical image segmentation

Flattened and simplified SSCU-Net: exploring the convolution potential for medical image segmentation

Medical image semantic segmentation is a crucial technique in medical imaging processing, providing essential diagnostic support by precisely delineating different tissue structures and pathological areas within an image. However, the pursuit of higher accuracy has led to increasingly complex architectures in existing networks, resulting in significant training overhead. In response, this study introduces a flattened, minimalist design philosophy and constructs the shallow super convolution U-shaped Net (SSCU-Net) based on this concept. Compared to the traditional four-layer U-shaped networks, SSCU-Net has a simplified two-layer structure, adhering to a lightweight research objective. On one hand, to address the issue of insufficient semantic feature extraction caused by the shallow network architecture, a parallel multi-branch feature extraction module called the super convolution block is designed to thoroughly extract diverse semantic information. On the other hand, to facilitate the transfer of critical semantic information between encoding and decoding, as well as across layers, the spatial convolution path, along with feature enhanced downsample and feature resolution upsample, are constructed. The performance of SSCU-Net was validated against 18 comparison models across seven metrics on five datasets. Results from metric analysis, image comparisons, and ablation tests collectively demonstrate that SSCU-Net achieves an average improvement of 15.9792% in the Dice coefficient compared to other models, confirming the model’s advantages in both lightweight design and accuracy. The network code is available at https://github.com/YF-W/SSCU-Net.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信