Suleman Alfalqi, Boumediene Boukhari, Ahmed Bchatnia, Abderrahmane Beniani
{"title":"分数导数耦合方程的高级神经网络方法","authors":"Suleman Alfalqi, Boumediene Boukhari, Ahmed Bchatnia, Abderrahmane Beniani","doi":"10.1186/s13661-024-01899-3","DOIUrl":null,"url":null,"abstract":"We investigate numerical solutions and compare them with Fractional Physics-Informed Neural Network (FPINN) solutions for a coupled wave equation involving fractional partial derivatives. The problem explores the evolution of functions u and v over time t and space x. We employ two numerical approximation schemes based on the finite element method to discretize the system of equations. The effectiveness of these schemes is validated by comparing numerical results with exact solutions. Additionally, we introduce the FPINN method to tackle the coupled equation with fractional derivative orders and compare its performance against traditional numerical methods. Key findings reveal that both numerical approaches provide accurate solutions, with the FPINN method demonstrating competitive performance in terms of accuracy and computational efficiency. Our study highlights the significance of employing FPINNs in solving fractional differential equations and underscores their potential as alternatives to conventional numerical methods. The novelty of this work lies in its comparative analysis of traditional numerical techniques and FPINNs for solving coupled wave equations with fractional derivatives, offering insights into advancing computational methods for complex physical systems.","PeriodicalId":49228,"journal":{"name":"Boundary Value Problems","volume":"188 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advanced neural network approaches for coupled equations with fractional derivatives\",\"authors\":\"Suleman Alfalqi, Boumediene Boukhari, Ahmed Bchatnia, Abderrahmane Beniani\",\"doi\":\"10.1186/s13661-024-01899-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate numerical solutions and compare them with Fractional Physics-Informed Neural Network (FPINN) solutions for a coupled wave equation involving fractional partial derivatives. The problem explores the evolution of functions u and v over time t and space x. We employ two numerical approximation schemes based on the finite element method to discretize the system of equations. The effectiveness of these schemes is validated by comparing numerical results with exact solutions. Additionally, we introduce the FPINN method to tackle the coupled equation with fractional derivative orders and compare its performance against traditional numerical methods. Key findings reveal that both numerical approaches provide accurate solutions, with the FPINN method demonstrating competitive performance in terms of accuracy and computational efficiency. Our study highlights the significance of employing FPINNs in solving fractional differential equations and underscores their potential as alternatives to conventional numerical methods. The novelty of this work lies in its comparative analysis of traditional numerical techniques and FPINNs for solving coupled wave equations with fractional derivatives, offering insights into advancing computational methods for complex physical systems.\",\"PeriodicalId\":49228,\"journal\":{\"name\":\"Boundary Value Problems\",\"volume\":\"188 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boundary Value Problems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1186/s13661-024-01899-3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boundary Value Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13661-024-01899-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Advanced neural network approaches for coupled equations with fractional derivatives
We investigate numerical solutions and compare them with Fractional Physics-Informed Neural Network (FPINN) solutions for a coupled wave equation involving fractional partial derivatives. The problem explores the evolution of functions u and v over time t and space x. We employ two numerical approximation schemes based on the finite element method to discretize the system of equations. The effectiveness of these schemes is validated by comparing numerical results with exact solutions. Additionally, we introduce the FPINN method to tackle the coupled equation with fractional derivative orders and compare its performance against traditional numerical methods. Key findings reveal that both numerical approaches provide accurate solutions, with the FPINN method demonstrating competitive performance in terms of accuracy and computational efficiency. Our study highlights the significance of employing FPINNs in solving fractional differential equations and underscores their potential as alternatives to conventional numerical methods. The novelty of this work lies in its comparative analysis of traditional numerical techniques and FPINNs for solving coupled wave equations with fractional derivatives, offering insights into advancing computational methods for complex physical systems.
期刊介绍:
The main aim of Boundary Value Problems is to provide a forum to promote, encourage, and bring together various disciplines which use the theory, methods, and applications of boundary value problems. Boundary Value Problems will publish very high quality research articles on boundary value problems for ordinary, functional, difference, elliptic, parabolic, and hyperbolic differential equations. Articles on singular, free, and ill-posed boundary value problems, and other areas of abstract and concrete analysis are welcome. In addition to regular research articles, Boundary Value Problems will publish review articles.