Samuel M. Nuugulu, Kailash C. Patidar, Divine T. Tarla
{"title":"解决时间分数 Black-Scholes 偏微分方程的物理信息神经网络方法","authors":"Samuel M. Nuugulu, Kailash C. Patidar, Divine T. Tarla","doi":"10.1007/s11081-024-09910-7","DOIUrl":null,"url":null,"abstract":"<p>We present a novel approach for solving time fractional Black-Scholes partial differential equations (tfBSPDEs) using Physics Informed Neural Network (PINN) approach. Traditional numerical methods are faced with challenges in solving fractional PDEs due to the non-locality and non-differentiability nature of fractional derivative operators. By leveraging the ideas of Riemann sums and the refinement of tagged partitions of the time domain, we show that fractional derivatives can directly be incorporated into the loss function when applying the PINN approach to solving tfBSPDEs. The approach allows for the simultaneous learning of the underlying process dynamics and the involved fractional derivative operator without a need for the use of numerical discretization of the fractional derivatives. Through some numerical experiments, we demonstrate that, the PINN approach is efficient, accurate and computationally inexpensive particularly when dealing with high frequency and noisy data. This work augments the understanding between advanced mathematical modeling and machine learning techniques, contributing to the body of knowlege on the advancement of accurate derivative pricing models.</p>","PeriodicalId":56141,"journal":{"name":"Optimization and Engineering","volume":"8 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Physics informed neural network approach for solving time fractional Black-Scholes partial differential equations\",\"authors\":\"Samuel M. Nuugulu, Kailash C. Patidar, Divine T. Tarla\",\"doi\":\"10.1007/s11081-024-09910-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present a novel approach for solving time fractional Black-Scholes partial differential equations (tfBSPDEs) using Physics Informed Neural Network (PINN) approach. Traditional numerical methods are faced with challenges in solving fractional PDEs due to the non-locality and non-differentiability nature of fractional derivative operators. By leveraging the ideas of Riemann sums and the refinement of tagged partitions of the time domain, we show that fractional derivatives can directly be incorporated into the loss function when applying the PINN approach to solving tfBSPDEs. The approach allows for the simultaneous learning of the underlying process dynamics and the involved fractional derivative operator without a need for the use of numerical discretization of the fractional derivatives. Through some numerical experiments, we demonstrate that, the PINN approach is efficient, accurate and computationally inexpensive particularly when dealing with high frequency and noisy data. This work augments the understanding between advanced mathematical modeling and machine learning techniques, contributing to the body of knowlege on the advancement of accurate derivative pricing models.</p>\",\"PeriodicalId\":56141,\"journal\":{\"name\":\"Optimization and Engineering\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimization and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11081-024-09910-7\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11081-024-09910-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
A Physics informed neural network approach for solving time fractional Black-Scholes partial differential equations
We present a novel approach for solving time fractional Black-Scholes partial differential equations (tfBSPDEs) using Physics Informed Neural Network (PINN) approach. Traditional numerical methods are faced with challenges in solving fractional PDEs due to the non-locality and non-differentiability nature of fractional derivative operators. By leveraging the ideas of Riemann sums and the refinement of tagged partitions of the time domain, we show that fractional derivatives can directly be incorporated into the loss function when applying the PINN approach to solving tfBSPDEs. The approach allows for the simultaneous learning of the underlying process dynamics and the involved fractional derivative operator without a need for the use of numerical discretization of the fractional derivatives. Through some numerical experiments, we demonstrate that, the PINN approach is efficient, accurate and computationally inexpensive particularly when dealing with high frequency and noisy data. This work augments the understanding between advanced mathematical modeling and machine learning techniques, contributing to the body of knowlege on the advancement of accurate derivative pricing models.
期刊介绍:
Optimization and Engineering is a multidisciplinary journal; its primary goal is to promote the application of optimization methods in the general area of engineering sciences. We expect submissions to OPTE not only to make a significant optimization contribution but also to impact a specific engineering application.
Topics of Interest:
-Optimization: All methods and algorithms of mathematical optimization, including blackbox and derivative-free optimization, continuous optimization, discrete optimization, global optimization, linear and conic optimization, multiobjective optimization, PDE-constrained optimization & control, and stochastic optimization. Numerical and implementation issues, optimization software, benchmarking, and case studies.
-Engineering Sciences: Aerospace engineering, biomedical engineering, chemical & process engineering, civil, environmental, & architectural engineering, electrical engineering, financial engineering, geosciences, healthcare engineering, industrial & systems engineering, mechanical engineering & MDO, and robotics.