{"title":"基于人体姿势识别的智能轮椅人机交互系统","authors":"Yali Han, Lei Zhou, Weijia Jiang, Gairan Wang","doi":"10.1007/s12206-024-0731-7","DOIUrl":null,"url":null,"abstract":"<p>A human posture interaction system guaranteed by algorithmic control is proposed to improve the convenience and control accuracy of wheelchairs. Initially, a system is designed based on microelectromechanical systems (MEMS) technology that incorporates a dual-inertial measurement unit to efficiently capture data on the user’s body posture. Subsequently, a K-means clustering algorithm is implemented in the system to analyze and recognize the user’s body position in real-time. This condition allows the system to deduce the user’s intention and react accordingly. Finally, the control system is validated through identification control experiments. Experiment results demonstrate a success rate above 97 %, thereby suggesting the reliability of the posture recognition algorithm.</p>","PeriodicalId":16235,"journal":{"name":"Journal of Mechanical Science and Technology","volume":"85 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intelligent wheelchair human–robot interactive system based on human posture recognition\",\"authors\":\"Yali Han, Lei Zhou, Weijia Jiang, Gairan Wang\",\"doi\":\"10.1007/s12206-024-0731-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A human posture interaction system guaranteed by algorithmic control is proposed to improve the convenience and control accuracy of wheelchairs. Initially, a system is designed based on microelectromechanical systems (MEMS) technology that incorporates a dual-inertial measurement unit to efficiently capture data on the user’s body posture. Subsequently, a K-means clustering algorithm is implemented in the system to analyze and recognize the user’s body position in real-time. This condition allows the system to deduce the user’s intention and react accordingly. Finally, the control system is validated through identification control experiments. Experiment results demonstrate a success rate above 97 %, thereby suggesting the reliability of the posture recognition algorithm.</p>\",\"PeriodicalId\":16235,\"journal\":{\"name\":\"Journal of Mechanical Science and Technology\",\"volume\":\"85 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanical Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12206-024-0731-7\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12206-024-0731-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Intelligent wheelchair human–robot interactive system based on human posture recognition
A human posture interaction system guaranteed by algorithmic control is proposed to improve the convenience and control accuracy of wheelchairs. Initially, a system is designed based on microelectromechanical systems (MEMS) technology that incorporates a dual-inertial measurement unit to efficiently capture data on the user’s body posture. Subsequently, a K-means clustering algorithm is implemented in the system to analyze and recognize the user’s body position in real-time. This condition allows the system to deduce the user’s intention and react accordingly. Finally, the control system is validated through identification control experiments. Experiment results demonstrate a success rate above 97 %, thereby suggesting the reliability of the posture recognition algorithm.
期刊介绍:
The aim of the Journal of Mechanical Science and Technology is to provide an international forum for the publication and dissemination of original work that contributes to the understanding of the main and related disciplines of mechanical engineering, either empirical or theoretical. The Journal covers the whole spectrum of mechanical engineering, which includes, but is not limited to, Materials and Design Engineering, Production Engineering and Fusion Technology, Dynamics, Vibration and Control, Thermal Engineering and Fluids Engineering.
Manuscripts may fall into several categories including full articles, solicited reviews or commentary, and unsolicited reviews or commentary related to the core of mechanical engineering.