人工智能与自然智能的混合:从统计力学到人工智能,再回到湍流

IF 2 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Michael (Misha) Chertkov
{"title":"人工智能与自然智能的混合:从统计力学到人工智能,再回到湍流","authors":"Michael (Misha) Chertkov","doi":"10.1088/1751-8121/ad67bb","DOIUrl":null,"url":null,"abstract":"The paper reflects on the future role of artificial intelligence (AI) in scientific research, with a special focus on turbulence studies, and examines the evolution of AI, particularly through Diffusion Models rooted in non-equilibrium statistical mechanics. It underscores the significant impact of AI on advancing reduced, Lagrangian models of turbulence through innovative use of Deep Neural Networks. Additionally, the paper reviews various other AI applications in turbulence research and outlines potential challenges and opportunities in the concurrent advancement of AI and statistical hydrodynamics. This discussion sets the stage for a future where AI and turbulence research are intricately intertwined, leading to more profound insights and advancements in both fields.","PeriodicalId":16763,"journal":{"name":"Journal of Physics A: Mathematical and Theoretical","volume":"187 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mixing artificial and natural intelligence: from statistical mechanics to AI and back to turbulence\",\"authors\":\"Michael (Misha) Chertkov\",\"doi\":\"10.1088/1751-8121/ad67bb\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper reflects on the future role of artificial intelligence (AI) in scientific research, with a special focus on turbulence studies, and examines the evolution of AI, particularly through Diffusion Models rooted in non-equilibrium statistical mechanics. It underscores the significant impact of AI on advancing reduced, Lagrangian models of turbulence through innovative use of Deep Neural Networks. Additionally, the paper reviews various other AI applications in turbulence research and outlines potential challenges and opportunities in the concurrent advancement of AI and statistical hydrodynamics. This discussion sets the stage for a future where AI and turbulence research are intricately intertwined, leading to more profound insights and advancements in both fields.\",\"PeriodicalId\":16763,\"journal\":{\"name\":\"Journal of Physics A: Mathematical and Theoretical\",\"volume\":\"187 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics A: Mathematical and Theoretical\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1751-8121/ad67bb\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A: Mathematical and Theoretical","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad67bb","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文反思了人工智能(AI)在科学研究中的未来作用,特别关注湍流研究,并探讨了人工智能的演变,尤其是通过植根于非平衡统计力学的扩散模型。它强调了人工智能通过创新性地使用深度神经网络,对推进简化的拉格朗日湍流模型所产生的重大影响。此外,论文还回顾了人工智能在湍流研究中的其他各种应用,并概述了人工智能和统计流体力学同时发展所面临的潜在挑战和机遇。这一讨论为人工智能与湍流研究错综复杂地交织在一起的未来奠定了基础,从而为这两个领域带来更深刻的见解和进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mixing artificial and natural intelligence: from statistical mechanics to AI and back to turbulence
The paper reflects on the future role of artificial intelligence (AI) in scientific research, with a special focus on turbulence studies, and examines the evolution of AI, particularly through Diffusion Models rooted in non-equilibrium statistical mechanics. It underscores the significant impact of AI on advancing reduced, Lagrangian models of turbulence through innovative use of Deep Neural Networks. Additionally, the paper reviews various other AI applications in turbulence research and outlines potential challenges and opportunities in the concurrent advancement of AI and statistical hydrodynamics. This discussion sets the stage for a future where AI and turbulence research are intricately intertwined, leading to more profound insights and advancements in both fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
14.30%
发文量
542
审稿时长
1.9 months
期刊介绍: Publishing 50 issues a year, Journal of Physics A: Mathematical and Theoretical is a major journal of theoretical physics reporting research on the mathematical structures that describe fundamental processes of the physical world and on the analytical, computational and numerical methods for exploring these structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信