素度费马曲线的切比雪夫偏差

Yoshiaki Okumura
{"title":"素度费马曲线的切比雪夫偏差","authors":"Yoshiaki Okumura","doi":"10.1007/s11139-024-00913-7","DOIUrl":null,"url":null,"abstract":"<p>In this article, we prove that an asymptotic formula for the prime number race with respect to Fermat curves of prime degree is equivalent to part of the Deep Riemann Hypothesis (DRH), which is a conjecture on the convergence of partial Euler products of <i>L</i>-functions on the critical line. We also show that such an equivalence holds for some quotients of Fermat curves. As an application, we compute the order of zero at <span>\\(s=1\\)</span> for the second moment <i>L</i>-functions of those curves under DRH.</p>","PeriodicalId":501430,"journal":{"name":"The Ramanujan Journal","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chebyshev’s bias for Fermat curves of prime degree\",\"authors\":\"Yoshiaki Okumura\",\"doi\":\"10.1007/s11139-024-00913-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, we prove that an asymptotic formula for the prime number race with respect to Fermat curves of prime degree is equivalent to part of the Deep Riemann Hypothesis (DRH), which is a conjecture on the convergence of partial Euler products of <i>L</i>-functions on the critical line. We also show that such an equivalence holds for some quotients of Fermat curves. As an application, we compute the order of zero at <span>\\\\(s=1\\\\)</span> for the second moment <i>L</i>-functions of those curves under DRH.</p>\",\"PeriodicalId\":501430,\"journal\":{\"name\":\"The Ramanujan Journal\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Ramanujan Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11139-024-00913-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Ramanujan Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11139-024-00913-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们证明了素数竞赛关于素度费马曲线的渐近公式等价于深黎曼假设(DRH)的一部分,DRH 是关于临界线上 L 函数部分欧拉积收敛性的猜想。我们还证明,对于费马曲线的某些商,这种等价性是成立的。作为应用,我们计算了 DRH 下这些曲线的第二矩 L 函数在 \(s=1\) 处的零阶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chebyshev’s bias for Fermat curves of prime degree

In this article, we prove that an asymptotic formula for the prime number race with respect to Fermat curves of prime degree is equivalent to part of the Deep Riemann Hypothesis (DRH), which is a conjecture on the convergence of partial Euler products of L-functions on the critical line. We also show that such an equivalence holds for some quotients of Fermat curves. As an application, we compute the order of zero at \(s=1\) for the second moment L-functions of those curves under DRH.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信