介观尺度上不可逆过程热力学中的不确定关系

IF 2.9 3区 物理与天体物理 Q3 NANOSCIENCE & NANOTECHNOLOGY
Giorgio Sonnino
{"title":"介观尺度上不可逆过程热力学中的不确定关系","authors":"Giorgio Sonnino","doi":"10.1016/j.physe.2024.116058","DOIUrl":null,"url":null,"abstract":"<div><p>Studies of mesoscopic structures have become a leading and rapidly evolving research field ranging from physics, chemistry, and mineralogy to life sciences. The increasing miniaturization of devices with length scales of a few nanometers is leading to radical changes in the realization of new materials and in shedding light on our understanding of the fundamental laws of nature that govern the dynamics of systems at the mesoscopic scale. We investigate thermodynamic processes in small systems in Onsager’s region based on recent experimental results and previous theoretical research. We show that fundamental quantities such as the total entropy production, the thermodynamic variables conjugate to the thermodynamic forces, and the Glansdorff–Prigogine’s dissipative variable may be discretized at the mesoscopic scale. We establish the canonical com- mutation rules (CCRs) valid at the mesoscopic scale. The numerical value of the discretization constant is estimated experimentally. The ultraviolet divergence problem is solved by applying the correspondence principle with Einstein–Prigogine’s fluctuations theory in the limit of macroscopic systems. Examples of quantization of thermodynamic systems out of the Onsager region are currently being finalized.</p></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"164 ","pages":"Article 116058"},"PeriodicalIF":2.9000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncertainty relations in thermodynamics of irreversible processes on a mesoscopic scale\",\"authors\":\"Giorgio Sonnino\",\"doi\":\"10.1016/j.physe.2024.116058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Studies of mesoscopic structures have become a leading and rapidly evolving research field ranging from physics, chemistry, and mineralogy to life sciences. The increasing miniaturization of devices with length scales of a few nanometers is leading to radical changes in the realization of new materials and in shedding light on our understanding of the fundamental laws of nature that govern the dynamics of systems at the mesoscopic scale. We investigate thermodynamic processes in small systems in Onsager’s region based on recent experimental results and previous theoretical research. We show that fundamental quantities such as the total entropy production, the thermodynamic variables conjugate to the thermodynamic forces, and the Glansdorff–Prigogine’s dissipative variable may be discretized at the mesoscopic scale. We establish the canonical com- mutation rules (CCRs) valid at the mesoscopic scale. The numerical value of the discretization constant is estimated experimentally. The ultraviolet divergence problem is solved by applying the correspondence principle with Einstein–Prigogine’s fluctuations theory in the limit of macroscopic systems. Examples of quantization of thermodynamic systems out of the Onsager region are currently being finalized.</p></div>\",\"PeriodicalId\":20181,\"journal\":{\"name\":\"Physica E-low-dimensional Systems & Nanostructures\",\"volume\":\"164 \",\"pages\":\"Article 116058\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica E-low-dimensional Systems & Nanostructures\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1386947724001620\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica E-low-dimensional Systems & Nanostructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386947724001620","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

从物理学、化学、矿物学到生命科学,介观结构研究已成为一个领先且发展迅速的研究领域。长度尺度仅为几纳米的设备日益微型化,导致新材料的实现发生了翻天覆地的变化,也使我们对支配介观尺度系统动力学的基本自然规律的理解更加清晰。我们基于最新的实验结果和以往的理论研究,对昂萨格区域内小系统的热力学过程进行了研究。我们表明,总熵产生、与热动力共轭的热力学变量和格兰斯多夫-普里戈金耗散变量等基本量可以在介观尺度上离散化。我们建立了在介观尺度上有效的典型突变规则(CCR)。离散常数的数值是通过实验估算出来的。通过在宏观系统极限中应用与爱因斯坦-普里戈金波动理论的对应原理,解决了紫外发散问题。目前正在最后确定昂萨格区域之外的热力学系统量子化实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uncertainty relations in thermodynamics of irreversible processes on a mesoscopic scale

Studies of mesoscopic structures have become a leading and rapidly evolving research field ranging from physics, chemistry, and mineralogy to life sciences. The increasing miniaturization of devices with length scales of a few nanometers is leading to radical changes in the realization of new materials and in shedding light on our understanding of the fundamental laws of nature that govern the dynamics of systems at the mesoscopic scale. We investigate thermodynamic processes in small systems in Onsager’s region based on recent experimental results and previous theoretical research. We show that fundamental quantities such as the total entropy production, the thermodynamic variables conjugate to the thermodynamic forces, and the Glansdorff–Prigogine’s dissipative variable may be discretized at the mesoscopic scale. We establish the canonical com- mutation rules (CCRs) valid at the mesoscopic scale. The numerical value of the discretization constant is estimated experimentally. The ultraviolet divergence problem is solved by applying the correspondence principle with Einstein–Prigogine’s fluctuations theory in the limit of macroscopic systems. Examples of quantization of thermodynamic systems out of the Onsager region are currently being finalized.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.30
自引率
6.10%
发文量
356
审稿时长
65 days
期刊介绍: Physica E: Low-dimensional systems and nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals. Both theoretical and experimental contributions are invited. Topics suitable for publication in this journal include spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena. Keywords: • topological insulators/superconductors, majorana fermions, Wyel semimetals; • quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems; • layered superconductivity, low dimensional systems with superconducting proximity effect; • 2D materials such as transition metal dichalcogenides; • oxide heterostructures including ZnO, SrTiO3 etc; • carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.) • quantum wells and superlattices; • quantum Hall effect, quantum spin Hall effect, quantum anomalous Hall effect; • optical- and phonons-related phenomena; • magnetic-semiconductor structures; • charge/spin-, magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling; • ultra-fast nonlinear optical phenomena; • novel devices and applications (such as high performance sensor, solar cell, etc); • novel growth and fabrication techniques for nanostructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信