具有 SDoH 意识的前列腺癌筛查方法:使用 PSA 解决前列腺癌过度诊断问题

Ashley Lewis, Yash Samir Khandwala, Tina Hernandez-Boussard, James Brooks
{"title":"具有 SDoH 意识的前列腺癌筛查方法:使用 PSA 解决前列腺癌过度诊断问题","authors":"Ashley Lewis, Yash Samir Khandwala, Tina Hernandez-Boussard, James Brooks","doi":"10.1101/2024.07.31.24311297","DOIUrl":null,"url":null,"abstract":"This study investigates the potential of multimodal data for prostate cancer (PCa) risk prediction using the All of Us (AoU) research program dataset. By integrating polygenic risk scores (PRSs) with diverse clinical, survey, and genomic data, we developed a model that identifies established PCa risk factors, such as age and family history, and a novel factor: recent healthcare visits are linked to reduced risk. The model's performance, notably the false positive rate, is improved compared to traditional methods, despite the lack of Prostate-Specific Antigen (PSA) data. The findings demonstrate that incorporating comprehensive multimodal data from AoU can enhance PCa risk prediction and provide a robust framework for future clinical applications.","PeriodicalId":501454,"journal":{"name":"medRxiv - Health Informatics","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SDoH-Aware Approach to Prostate Cancer Screening: Addressing Overdiagnosis of Prostate Cancer using PSA\",\"authors\":\"Ashley Lewis, Yash Samir Khandwala, Tina Hernandez-Boussard, James Brooks\",\"doi\":\"10.1101/2024.07.31.24311297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates the potential of multimodal data for prostate cancer (PCa) risk prediction using the All of Us (AoU) research program dataset. By integrating polygenic risk scores (PRSs) with diverse clinical, survey, and genomic data, we developed a model that identifies established PCa risk factors, such as age and family history, and a novel factor: recent healthcare visits are linked to reduced risk. The model's performance, notably the false positive rate, is improved compared to traditional methods, despite the lack of Prostate-Specific Antigen (PSA) data. The findings demonstrate that incorporating comprehensive multimodal data from AoU can enhance PCa risk prediction and provide a robust framework for future clinical applications.\",\"PeriodicalId\":501454,\"journal\":{\"name\":\"medRxiv - Health Informatics\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv - Health Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.07.31.24311297\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.07.31.24311297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用 "我们所有人"(AoU)研究计划数据集,探讨了多模态数据在前列腺癌(PCa)风险预测方面的潜力。通过将多基因风险评分(PRS)与各种临床、调查和基因组数据相结合,我们开发了一个模型,该模型可识别年龄和家族史等既有的 PCa 风险因素以及一个新因素:最近的医疗保健就诊与风险降低有关。尽管缺乏前列腺特异性抗原(PSA)数据,但与传统方法相比,该模型的性能(尤其是假阳性率)有所提高。研究结果表明,结合 AoU 的综合多模态数据可以提高 PCa 风险预测能力,并为未来的临床应用提供一个稳健的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SDoH-Aware Approach to Prostate Cancer Screening: Addressing Overdiagnosis of Prostate Cancer using PSA
This study investigates the potential of multimodal data for prostate cancer (PCa) risk prediction using the All of Us (AoU) research program dataset. By integrating polygenic risk scores (PRSs) with diverse clinical, survey, and genomic data, we developed a model that identifies established PCa risk factors, such as age and family history, and a novel factor: recent healthcare visits are linked to reduced risk. The model's performance, notably the false positive rate, is improved compared to traditional methods, despite the lack of Prostate-Specific Antigen (PSA) data. The findings demonstrate that incorporating comprehensive multimodal data from AoU can enhance PCa risk prediction and provide a robust framework for future clinical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信