带弃权的孔多塞陪审员定理

Ganesh Ghalme, Reshef Meir
{"title":"带弃权的孔多塞陪审员定理","authors":"Ganesh Ghalme, Reshef Meir","doi":"arxiv-2408.00317","DOIUrl":null,"url":null,"abstract":"The well-known Condorcet's Jury theorem posits that the majority rule selects\nthe best alternative among two available options with probability one, as the\npopulation size increases to infinity. We study this result under an asymmetric\ntwo-candidate setup, where supporters of both candidates may have different\nparticipation costs. When the decision to abstain is fully rational i.e., when the vote pivotality\nis the probability of a tie, the only equilibrium outcome is a trivial\nequilibrium where all voters except those with zero voting cost, abstain. We\npropose and analyze a more practical, boundedly rational model where voters\noverestimate their pivotality, and show that under this model, non-trivial\nequilibria emerge where the winning probability of both candidates is bounded\naway from one. We show that when the pivotality estimate strongly depends on the margin of\nvictory, victory is not assured to any candidate in any non-trivial\nequilibrium, regardless of population size and in contrast to Condorcet's\nassertion. Whereas, under a weak dependence on margin, Condorcet's Jury theorem\nis restored.","PeriodicalId":501315,"journal":{"name":"arXiv - CS - Multiagent Systems","volume":"118 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Condorcet's Jury Theorem with Abstention\",\"authors\":\"Ganesh Ghalme, Reshef Meir\",\"doi\":\"arxiv-2408.00317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The well-known Condorcet's Jury theorem posits that the majority rule selects\\nthe best alternative among two available options with probability one, as the\\npopulation size increases to infinity. We study this result under an asymmetric\\ntwo-candidate setup, where supporters of both candidates may have different\\nparticipation costs. When the decision to abstain is fully rational i.e., when the vote pivotality\\nis the probability of a tie, the only equilibrium outcome is a trivial\\nequilibrium where all voters except those with zero voting cost, abstain. We\\npropose and analyze a more practical, boundedly rational model where voters\\noverestimate their pivotality, and show that under this model, non-trivial\\nequilibria emerge where the winning probability of both candidates is bounded\\naway from one. We show that when the pivotality estimate strongly depends on the margin of\\nvictory, victory is not assured to any candidate in any non-trivial\\nequilibrium, regardless of population size and in contrast to Condorcet's\\nassertion. Whereas, under a weak dependence on margin, Condorcet's Jury theorem\\nis restored.\",\"PeriodicalId\":501315,\"journal\":{\"name\":\"arXiv - CS - Multiagent Systems\",\"volume\":\"118 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Multiagent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.00317\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Multiagent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.00317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

众所周知的孔多塞陪审团定理认为,当人口数量增加到无穷大时,多数规则会以 1 的概率从两个可选方案中选出最佳方案。我们将在两个候选人不对称的情况下研究这一结果,在这种情况下,两个候选人的支持者可能有不同的参与成本。当弃权决定是完全理性的,即投票中枢是平局的概率时,唯一的均衡结果是三元均衡,即除了投票成本为零的选民外,所有选民都弃权。我们提出并分析了一个更实用的、有界理性的模型,在这个模型中,选民会低估自己的投票枢轴性,并证明在这个模型下,会出现非三元均衡,即两个候选人的获胜概率都有界于 1。我们证明,当枢轴性估计强烈依赖于胜负差时,无论人口规模如何,在任何非三重均衡中,任何候选人都无法确保获胜,这与孔多塞的主张形成了鲜明对比。而在弱依赖胜负关系的情况下,康德赛特的陪审员定理又得以恢复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Condorcet's Jury Theorem with Abstention
The well-known Condorcet's Jury theorem posits that the majority rule selects the best alternative among two available options with probability one, as the population size increases to infinity. We study this result under an asymmetric two-candidate setup, where supporters of both candidates may have different participation costs. When the decision to abstain is fully rational i.e., when the vote pivotality is the probability of a tie, the only equilibrium outcome is a trivial equilibrium where all voters except those with zero voting cost, abstain. We propose and analyze a more practical, boundedly rational model where voters overestimate their pivotality, and show that under this model, non-trivial equilibria emerge where the winning probability of both candidates is bounded away from one. We show that when the pivotality estimate strongly depends on the margin of victory, victory is not assured to any candidate in any non-trivial equilibrium, regardless of population size and in contrast to Condorcet's assertion. Whereas, under a weak dependence on margin, Condorcet's Jury theorem is restored.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信