利用蜂群技术模拟行人行为

IF 1.3 4区 工程技术 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Yago Ávila Moré;Basil Mohammed Al-Hadithi;Victor Cadix Martín
{"title":"利用蜂群技术模拟行人行为","authors":"Yago Ávila Moré;Basil Mohammed Al-Hadithi;Victor Cadix Martín","doi":"10.1109/TLA.2024.10620392","DOIUrl":null,"url":null,"abstract":"Modelling pedestrians and groups of people is a highly multidisciplinary technique, given the significant interest it attracts from various branches of science and engineering. This results in many different methodologies that may arise from diverse objectives. The model developed in this work is an agent-based model, in which pedestrian behaviour is defined by a set of forces. Each force models an aspect of pedestrian gait, with the objective of creating a virtual environment to train and test control systems for collaborative robots or autonomous vehicles. To meet the modelling requirements, the system employs various algorithms, such as \"flocking\", which simulates the coordination and formation of groups, \"pathfinding\", which enables agents to discover optimal routes within a given space, and algorithms specialized in avoiding walls and dynamic obstacles. These components collaborate to accurately depict how crowds move and react in different environments and situations. Thanks to the modularity of this approach, which facilitates the adjustment and expansion of the components, the developed system can be integrated into various applications, such as simulating non-playable characters (NPCs) in video games or modelling the evacuation of a building.","PeriodicalId":55024,"journal":{"name":"IEEE Latin America Transactions","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10620392","citationCount":"0","resultStr":"{\"title\":\"Modelling pedestrian behaviour using swarm techniques\",\"authors\":\"Yago Ávila Moré;Basil Mohammed Al-Hadithi;Victor Cadix Martín\",\"doi\":\"10.1109/TLA.2024.10620392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modelling pedestrians and groups of people is a highly multidisciplinary technique, given the significant interest it attracts from various branches of science and engineering. This results in many different methodologies that may arise from diverse objectives. The model developed in this work is an agent-based model, in which pedestrian behaviour is defined by a set of forces. Each force models an aspect of pedestrian gait, with the objective of creating a virtual environment to train and test control systems for collaborative robots or autonomous vehicles. To meet the modelling requirements, the system employs various algorithms, such as \\\"flocking\\\", which simulates the coordination and formation of groups, \\\"pathfinding\\\", which enables agents to discover optimal routes within a given space, and algorithms specialized in avoiding walls and dynamic obstacles. These components collaborate to accurately depict how crowds move and react in different environments and situations. Thanks to the modularity of this approach, which facilitates the adjustment and expansion of the components, the developed system can be integrated into various applications, such as simulating non-playable characters (NPCs) in video games or modelling the evacuation of a building.\",\"PeriodicalId\":55024,\"journal\":{\"name\":\"IEEE Latin America Transactions\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10620392\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Latin America Transactions\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10620392/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Latin America Transactions","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10620392/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

行人和人群建模是一项高度跨学科的技术,因为它吸引了科学和工程学各个分支的浓厚兴趣。这就产生了许多不同的方法,这些方法可能来自不同的目标。本研究开发的模型是一个基于代理的模型,其中行人的行为由一组力来定义。每种力对行人步态的一个方面进行建模,目的是创建一个虚拟环境,用于训练和测试协作机器人或自动驾驶车辆的控制系统。为了满足建模要求,该系统采用了各种算法,如模拟群体协调和形成的 "成群 "算法、使代理在给定空间内发现最佳路线的 "寻路 "算法,以及专门用于避开墙壁和动态障碍物的算法。这些组件相互协作,准确描绘了人群在不同环境和情况下的移动和反应。由于这种方法的模块化便于调整和扩展组件,因此开发的系统可以集成到各种应用中,例如模拟视频游戏中的非玩家角色(NPC)或模拟建筑物的疏散。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modelling pedestrian behaviour using swarm techniques
Modelling pedestrians and groups of people is a highly multidisciplinary technique, given the significant interest it attracts from various branches of science and engineering. This results in many different methodologies that may arise from diverse objectives. The model developed in this work is an agent-based model, in which pedestrian behaviour is defined by a set of forces. Each force models an aspect of pedestrian gait, with the objective of creating a virtual environment to train and test control systems for collaborative robots or autonomous vehicles. To meet the modelling requirements, the system employs various algorithms, such as "flocking", which simulates the coordination and formation of groups, "pathfinding", which enables agents to discover optimal routes within a given space, and algorithms specialized in avoiding walls and dynamic obstacles. These components collaborate to accurately depict how crowds move and react in different environments and situations. Thanks to the modularity of this approach, which facilitates the adjustment and expansion of the components, the developed system can be integrated into various applications, such as simulating non-playable characters (NPCs) in video games or modelling the evacuation of a building.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Latin America Transactions
IEEE Latin America Transactions COMPUTER SCIENCE, INFORMATION SYSTEMS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
3.50
自引率
7.70%
发文量
192
审稿时长
3-8 weeks
期刊介绍: IEEE Latin America Transactions (IEEE LATAM) is an interdisciplinary journal focused on the dissemination of original and quality research papers / review articles in Spanish and Portuguese of emerging topics in three main areas: Computing, Electric Energy and Electronics. Some of the sub-areas of the journal are, but not limited to: Automatic control, communications, instrumentation, artificial intelligence, power and industrial electronics, fault diagnosis and detection, transportation electrification, internet of things, electrical machines, circuits and systems, biomedicine and biomedical / haptic applications, secure communications, robotics, sensors and actuators, computer networks, smart grids, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信