基于 ISO 23247 标准的增材制造机器人单元的数字孪生实施

IF 1.3 4区 工程技术 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Joao Vítor Arantes Cabral;Alberto José Álvares;Guilherme Caribé de Carvalho
{"title":"基于 ISO 23247 标准的增材制造机器人单元的数字孪生实施","authors":"Joao Vítor Arantes Cabral;Alberto José Álvares;Guilherme Caribé de Carvalho","doi":"10.1109/TLA.2024.10620386","DOIUrl":null,"url":null,"abstract":"Recent developments in the field of Additive Manufacturing have been improving the capabilities of the technique not only to be able to build complex geometry parts layer by layer with different materials, but also including the so-called Industry 4.0 technologies, namely Internet of Things (IoT), big data (BD) and Digital Twins (DT). The combination of these technologies with Additive Manufacturing allows online process monitoring and simulation, along with the cloud storage of the process and geometry data collected during the material deposition. The analysis of such data allows online and post-deposition identification of eventual process instabilities that can lead to quality problems. Considering the above-mentioned concepts, this work presents a DT architecture based on the ISO 23247-Digital Twin Framework for Manufacturing standard. In this sense, an approach of a Digital Twin framework for metal additive manufacturing process in a robotic cell composed of a robotic arm, positioning table and welding machine is presented and validated, focusing on the collection and cloud storage of both geometrical and process data along with near real-time process simulation.","PeriodicalId":55024,"journal":{"name":"IEEE Latin America Transactions","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10620386","citationCount":"0","resultStr":"{\"title\":\"Digital Twin Implementation for an Additive Manufacturing Robotic Cell based on the ISO 23247 Standard\",\"authors\":\"Joao Vítor Arantes Cabral;Alberto José Álvares;Guilherme Caribé de Carvalho\",\"doi\":\"10.1109/TLA.2024.10620386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent developments in the field of Additive Manufacturing have been improving the capabilities of the technique not only to be able to build complex geometry parts layer by layer with different materials, but also including the so-called Industry 4.0 technologies, namely Internet of Things (IoT), big data (BD) and Digital Twins (DT). The combination of these technologies with Additive Manufacturing allows online process monitoring and simulation, along with the cloud storage of the process and geometry data collected during the material deposition. The analysis of such data allows online and post-deposition identification of eventual process instabilities that can lead to quality problems. Considering the above-mentioned concepts, this work presents a DT architecture based on the ISO 23247-Digital Twin Framework for Manufacturing standard. In this sense, an approach of a Digital Twin framework for metal additive manufacturing process in a robotic cell composed of a robotic arm, positioning table and welding machine is presented and validated, focusing on the collection and cloud storage of both geometrical and process data along with near real-time process simulation.\",\"PeriodicalId\":55024,\"journal\":{\"name\":\"IEEE Latin America Transactions\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10620386\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Latin America Transactions\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10620386/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Latin America Transactions","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10620386/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

增材制造领域的最新发展一直在提高该技术的能力,不仅能够使用不同材料逐层制造复杂几何形状的零件,还包括所谓的工业 4.0 技术,即物联网 (IoT)、大数据 (BD) 和数字双胞胎 (DT)。将这些技术与快速成型制造技术相结合,可实现在线过程监控和模拟,并对材料沉积过程中收集的过程和几何数据进行云存储。通过对这些数据的分析,可以在线和在沉积后识别可能导致质量问题的最终工艺不稳定性。考虑到上述概念,这项工作提出了一种基于 ISO 23247 制造标准数字孪生框架的 DT 架构。从这个意义上讲,本文介绍并验证了在由机械臂、定位台和焊接机组成的机器人单元中进行金属快速成型制造过程的数字孪生框架方法,重点关注几何数据和过程数据的收集和云存储,以及近实时过程模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Digital Twin Implementation for an Additive Manufacturing Robotic Cell based on the ISO 23247 Standard
Recent developments in the field of Additive Manufacturing have been improving the capabilities of the technique not only to be able to build complex geometry parts layer by layer with different materials, but also including the so-called Industry 4.0 technologies, namely Internet of Things (IoT), big data (BD) and Digital Twins (DT). The combination of these technologies with Additive Manufacturing allows online process monitoring and simulation, along with the cloud storage of the process and geometry data collected during the material deposition. The analysis of such data allows online and post-deposition identification of eventual process instabilities that can lead to quality problems. Considering the above-mentioned concepts, this work presents a DT architecture based on the ISO 23247-Digital Twin Framework for Manufacturing standard. In this sense, an approach of a Digital Twin framework for metal additive manufacturing process in a robotic cell composed of a robotic arm, positioning table and welding machine is presented and validated, focusing on the collection and cloud storage of both geometrical and process data along with near real-time process simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Latin America Transactions
IEEE Latin America Transactions COMPUTER SCIENCE, INFORMATION SYSTEMS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
3.50
自引率
7.70%
发文量
192
审稿时长
3-8 weeks
期刊介绍: IEEE Latin America Transactions (IEEE LATAM) is an interdisciplinary journal focused on the dissemination of original and quality research papers / review articles in Spanish and Portuguese of emerging topics in three main areas: Computing, Electric Energy and Electronics. Some of the sub-areas of the journal are, but not limited to: Automatic control, communications, instrumentation, artificial intelligence, power and industrial electronics, fault diagnosis and detection, transportation electrification, internet of things, electrical machines, circuits and systems, biomedicine and biomedical / haptic applications, secure communications, robotics, sensors and actuators, computer networks, smart grids, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信