从非负曲率空间到 CAT(1) 空间的 Lipschitz 扩展

Sebastian Gietl
{"title":"从非负曲率空间到 CAT(1) 空间的 Lipschitz 扩展","authors":"Sebastian Gietl","doi":"arxiv-2408.00564","DOIUrl":null,"url":null,"abstract":"We prove that complete $\\text{CAT}(\\kappa)$ spaces of sufficiently small\nradii possess metric cotype 2 and metric Markov cotype 2. This generalizes the\npreviously known result for complete $\\text{CAT}(0)$ spaces. The generalization\ninvolves extending the variance inequality known for barycenters in\n$\\text{CAT}(0)$ spaces to an inequality analogous to one for 2-uniformly convex\nBanach spaces, and demonstrating that the barycenter map on such spaces is\nLipschitz continuous on the corresponding Wasserstein 2 space. By utilizing the\ngeneralized Ball extension theorem by Mendel and Naor, we obtain an extension\nresult for Lipschitz maps from Alexandrov spaces of nonnegative curvature into\n$\\text{CAT}(\\kappa)$ spaces whose image is contained in a subspace of\nsufficiently small radius, thereby weakening the curvature assumption in the\nwell-known Lipschitz extension theorem for Alexandrov spaces by Lang and\nSchr\\\"oder. As an additional application, we obtain that $\\ell_p$ spaces for $p\n> 2$ cannot be uniformly embedded into any $\\text{CAT}(\\kappa)$ space with\nsufficiently small diameter.","PeriodicalId":501444,"journal":{"name":"arXiv - MATH - Metric Geometry","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lipschitz extensions from spaces of nonnegative curvature into CAT(1) spaces\",\"authors\":\"Sebastian Gietl\",\"doi\":\"arxiv-2408.00564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that complete $\\\\text{CAT}(\\\\kappa)$ spaces of sufficiently small\\nradii possess metric cotype 2 and metric Markov cotype 2. This generalizes the\\npreviously known result for complete $\\\\text{CAT}(0)$ spaces. The generalization\\ninvolves extending the variance inequality known for barycenters in\\n$\\\\text{CAT}(0)$ spaces to an inequality analogous to one for 2-uniformly convex\\nBanach spaces, and demonstrating that the barycenter map on such spaces is\\nLipschitz continuous on the corresponding Wasserstein 2 space. By utilizing the\\ngeneralized Ball extension theorem by Mendel and Naor, we obtain an extension\\nresult for Lipschitz maps from Alexandrov spaces of nonnegative curvature into\\n$\\\\text{CAT}(\\\\kappa)$ spaces whose image is contained in a subspace of\\nsufficiently small radius, thereby weakening the curvature assumption in the\\nwell-known Lipschitz extension theorem for Alexandrov spaces by Lang and\\nSchr\\\\\\\"oder. As an additional application, we obtain that $\\\\ell_p$ spaces for $p\\n> 2$ cannot be uniformly embedded into any $\\\\text{CAT}(\\\\kappa)$ space with\\nsufficiently small diameter.\",\"PeriodicalId\":501444,\"journal\":{\"name\":\"arXiv - MATH - Metric Geometry\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Metric Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.00564\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Metric Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.00564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了足够小radii的完整$\text{CAT}(\kappa)$空间具有度量原型2和度量马尔可夫原型2。这概括了之前已知的完整 $\text{CAT}(0)$ 空间的结果。这一推广涉及将已知的$text{CAT}(0)$空间的原点不等式扩展为类似于2-均匀凸巴纳赫空间的不等式,并证明了这类空间上的原点映射在相应的瓦瑟斯坦2空间上是利普齐兹连续的。通过利用门德尔和纳奥尔的广义波尔扩展定理,我们得到了从非负曲率亚历山德罗夫空间到$text{CAT}(\kappa)$空间的利普齐兹映射的扩展结果,其映射包含在半径足够小的子空间中,从而削弱了朗和施罗德的亚历山德罗夫空间的著名利普齐兹扩展定理中的曲率假设。作为额外的应用,我们得到$p> 2$的$\ell_p$空间不能均匀地嵌入到任何具有足够小直径的$\text{CAT}(\kappa)$空间中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lipschitz extensions from spaces of nonnegative curvature into CAT(1) spaces
We prove that complete $\text{CAT}(\kappa)$ spaces of sufficiently small radii possess metric cotype 2 and metric Markov cotype 2. This generalizes the previously known result for complete $\text{CAT}(0)$ spaces. The generalization involves extending the variance inequality known for barycenters in $\text{CAT}(0)$ spaces to an inequality analogous to one for 2-uniformly convex Banach spaces, and demonstrating that the barycenter map on such spaces is Lipschitz continuous on the corresponding Wasserstein 2 space. By utilizing the generalized Ball extension theorem by Mendel and Naor, we obtain an extension result for Lipschitz maps from Alexandrov spaces of nonnegative curvature into $\text{CAT}(\kappa)$ spaces whose image is contained in a subspace of sufficiently small radius, thereby weakening the curvature assumption in the well-known Lipschitz extension theorem for Alexandrov spaces by Lang and Schr\"oder. As an additional application, we obtain that $\ell_p$ spaces for $p > 2$ cannot be uniformly embedded into any $\text{CAT}(\kappa)$ space with sufficiently small diameter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信