关于奇异空间之间谐波映射规律性的评论

Luca Gennaioli, Nicola Gigli, Hui-Chun Zhang, Xi-Ping Zhu
{"title":"关于奇异空间之间谐波映射规律性的评论","authors":"Luca Gennaioli, Nicola Gigli, Hui-Chun Zhang, Xi-Ping Zhu","doi":"arxiv-2408.00479","DOIUrl":null,"url":null,"abstract":"In this work we are going to establish H\\\"older continuity of harmonic maps\nfrom an open set $\\Omega$ in an ${\\rm RCD}(K,N)$ space valued into a ${\\rm\nCAT}(\\kappa)$ space, with the constraint that the image of $\\Omega$ via the map\nis contained in a sufficiently small ball in the target. Building on top of\nthis regularity and assuming a local Lipschitz regularity of the map, we\nestablish a weak version of the Bochner-Eells-Sampson inequality in such a\nnon-smooth setting. Finally we study the boundary regularity of such maps.","PeriodicalId":501444,"journal":{"name":"arXiv - MATH - Metric Geometry","volume":"216 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comments on the regularity of harmonic maps between singular spaces\",\"authors\":\"Luca Gennaioli, Nicola Gigli, Hui-Chun Zhang, Xi-Ping Zhu\",\"doi\":\"arxiv-2408.00479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we are going to establish H\\\\\\\"older continuity of harmonic maps\\nfrom an open set $\\\\Omega$ in an ${\\\\rm RCD}(K,N)$ space valued into a ${\\\\rm\\nCAT}(\\\\kappa)$ space, with the constraint that the image of $\\\\Omega$ via the map\\nis contained in a sufficiently small ball in the target. Building on top of\\nthis regularity and assuming a local Lipschitz regularity of the map, we\\nestablish a weak version of the Bochner-Eells-Sampson inequality in such a\\nnon-smooth setting. Finally we study the boundary regularity of such maps.\",\"PeriodicalId\":501444,\"journal\":{\"name\":\"arXiv - MATH - Metric Geometry\",\"volume\":\"216 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Metric Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.00479\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Metric Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.00479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们将建立谐波映射从${\rm RCD}(K,N)$空间中的开集$\Omega$到${\rmCAT}(\kappa)$空间的连续性,其约束条件是通过映射的$\Omega$的图像包含在目标中的一个足够小的球中。在此正则性的基础上,假定映射具有局部利普希兹正则性,我们在这种非光滑的环境中建立了弱版本的波赫纳-埃尔斯-桑普森不等式。最后,我们研究了这种映射的边界正则性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comments on the regularity of harmonic maps between singular spaces
In this work we are going to establish H\"older continuity of harmonic maps from an open set $\Omega$ in an ${\rm RCD}(K,N)$ space valued into a ${\rm CAT}(\kappa)$ space, with the constraint that the image of $\Omega$ via the map is contained in a sufficiently small ball in the target. Building on top of this regularity and assuming a local Lipschitz regularity of the map, we establish a weak version of the Bochner-Eells-Sampson inequality in such a non-smooth setting. Finally we study the boundary regularity of such maps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信