关于(n,m)函数的狄龙属性

Matteo Abbondati, Marco Calderini, Irene Villa
{"title":"关于(n,m)函数的狄龙属性","authors":"Matteo Abbondati, Marco Calderini, Irene Villa","doi":"10.1007/s12095-024-00730-1","DOIUrl":null,"url":null,"abstract":"<p>Dillon observed that an APN function <i>F</i> over <span>\\({{\\mathbb {F}}_{2}^{n}}\\)</span> with <i>n</i> greater than 2 must satisfy the condition <span>\\(\\{F(x) + F(y) + F(z) + F(x + y + z) :\\, x,y,z \\in {\\mathbb {F}}_{2}^{n}\\}= {\\mathbb {F}}_{2}^{n}\\)</span>. Recently, Taniguchi (Cryptogr. Commun. <b>15</b>, 627–647 2023) generalized this condition to functions defined from <span>\\({{\\mathbb {F}}_{2}^{n}}\\)</span> to <span>\\({{\\mathbb {F}}_{2}^{m}}\\)</span>, with <span>\\(m&gt;n\\)</span>, calling it the D-property. Taniguchi gave some characterizations of APN functions satisfying the D-property and provided some families of APN functions from <span>\\({{\\mathbb {F}}_{2}^{n}}\\)</span> to <span>\\({{\\mathbb {F}}_{2}^{n+1}}\\)</span> satisfying this property. In this work, we further study the D-property for (<i>n</i>, <i>m</i>)-functions with <span>\\(m\\ge n\\)</span>. We give some combinatorial bounds on the dimension <i>m</i> for the existence of such functions. Then, we characterize the D-property in terms of the Walsh transform and for quadratic functions we give a characterization of this property in terms of the ANF. We also give a simplification on checking the D-property for quadratic functions, which permits to extend some of the APN families provided by Taniguchi. We further focus on the class of the plateaued functions, providing conditions for the D-property. To conclude, we show a connection of some results obtained with the higher-order differentiability and the inverse Fourier transform.</p>","PeriodicalId":10788,"journal":{"name":"Cryptography and Communications","volume":"181 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Dillon’s property of (n, m)-functions\",\"authors\":\"Matteo Abbondati, Marco Calderini, Irene Villa\",\"doi\":\"10.1007/s12095-024-00730-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Dillon observed that an APN function <i>F</i> over <span>\\\\({{\\\\mathbb {F}}_{2}^{n}}\\\\)</span> with <i>n</i> greater than 2 must satisfy the condition <span>\\\\(\\\\{F(x) + F(y) + F(z) + F(x + y + z) :\\\\, x,y,z \\\\in {\\\\mathbb {F}}_{2}^{n}\\\\}= {\\\\mathbb {F}}_{2}^{n}\\\\)</span>. Recently, Taniguchi (Cryptogr. Commun. <b>15</b>, 627–647 2023) generalized this condition to functions defined from <span>\\\\({{\\\\mathbb {F}}_{2}^{n}}\\\\)</span> to <span>\\\\({{\\\\mathbb {F}}_{2}^{m}}\\\\)</span>, with <span>\\\\(m&gt;n\\\\)</span>, calling it the D-property. Taniguchi gave some characterizations of APN functions satisfying the D-property and provided some families of APN functions from <span>\\\\({{\\\\mathbb {F}}_{2}^{n}}\\\\)</span> to <span>\\\\({{\\\\mathbb {F}}_{2}^{n+1}}\\\\)</span> satisfying this property. In this work, we further study the D-property for (<i>n</i>, <i>m</i>)-functions with <span>\\\\(m\\\\ge n\\\\)</span>. We give some combinatorial bounds on the dimension <i>m</i> for the existence of such functions. Then, we characterize the D-property in terms of the Walsh transform and for quadratic functions we give a characterization of this property in terms of the ANF. We also give a simplification on checking the D-property for quadratic functions, which permits to extend some of the APN families provided by Taniguchi. We further focus on the class of the plateaued functions, providing conditions for the D-property. To conclude, we show a connection of some results obtained with the higher-order differentiability and the inverse Fourier transform.</p>\",\"PeriodicalId\":10788,\"journal\":{\"name\":\"Cryptography and Communications\",\"volume\":\"181 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cryptography and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12095-024-00730-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryptography and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12095-024-00730-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

狄龙观察到,n 大于 2 的 \({\mathbb {F}_{2}^{n}}\) 上的 APN 函数 F 必须满足条件(\{F(x) + F(y) + F(z) + F(x + y + z) :\, x,y,z \in {\mathbb {F}_{2}^{n}}= {\mathbb {F}_{2}^{n}\} )。最近,谷口(Taniguchi)(Cryptogr. Commun. 15, 627-647 2023)把这个条件推广到了\({\mathbb {F}_{2}^{n}}\) 到\({\mathbb {F}_{2}^{m}}) 的函数,称之为D属性。谷口给出了满足 D 特性的 APN 函数的一些特征,并提供了从 \({{\mathbb {F}_{2}^{n}}\) 到 \({{\mathbb {F}_{2}^{n+1}}\) 的一些满足此特性的 APN 函数族。在这项工作中,我们进一步研究了 (n, m) 函数的 D 特性。我们给出了此类函数存在的维数 m 的组合约束。然后,我们用沃尔什变换描述了 D 特性,并用 ANF 描述了二次函数的 D 特性。我们还给出了检验二次函数 D 特性的简化方法,从而可以扩展谷口提供的一些 APN 族。我们进一步关注高原函数类,为 D-属性提供条件。最后,我们展示了与高阶可微性和反傅里叶变换相关的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Dillon’s property of (n, m)-functions

Dillon observed that an APN function F over \({{\mathbb {F}}_{2}^{n}}\) with n greater than 2 must satisfy the condition \(\{F(x) + F(y) + F(z) + F(x + y + z) :\, x,y,z \in {\mathbb {F}}_{2}^{n}\}= {\mathbb {F}}_{2}^{n}\). Recently, Taniguchi (Cryptogr. Commun. 15, 627–647 2023) generalized this condition to functions defined from \({{\mathbb {F}}_{2}^{n}}\) to \({{\mathbb {F}}_{2}^{m}}\), with \(m>n\), calling it the D-property. Taniguchi gave some characterizations of APN functions satisfying the D-property and provided some families of APN functions from \({{\mathbb {F}}_{2}^{n}}\) to \({{\mathbb {F}}_{2}^{n+1}}\) satisfying this property. In this work, we further study the D-property for (nm)-functions with \(m\ge n\). We give some combinatorial bounds on the dimension m for the existence of such functions. Then, we characterize the D-property in terms of the Walsh transform and for quadratic functions we give a characterization of this property in terms of the ANF. We also give a simplification on checking the D-property for quadratic functions, which permits to extend some of the APN families provided by Taniguchi. We further focus on the class of the plateaued functions, providing conditions for the D-property. To conclude, we show a connection of some results obtained with the higher-order differentiability and the inverse Fourier transform.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信