有限链环上的自对偶和 MHDR 对偶循环码

Monika Dalal, Disha Garg, Sucheta Dutt, Ranjeet Sehmi
{"title":"有限链环上的自对偶和 MHDR 对偶循环码","authors":"Monika Dalal, Disha Garg, Sucheta Dutt, Ranjeet Sehmi","doi":"10.1007/s12095-024-00731-0","DOIUrl":null,"url":null,"abstract":"<p>In this work, we establish a minimal set of generators for the dual code of a cyclic code having arbitrary length over a finite chain ring. It is observed that this set of generators forms a minimal strong Grobner basis for the dual code. Using this structure for the dual of a cyclic code, we obtain sufficient as well as necessary conditions for a cyclic code to be a self dual code over a finite chain ring. We enumerate the distinct non-trivial self dual cyclic codes over these rings. Further, we determine all MHDR dual cyclic codes. We provide a few examples of self dual and MHDR dual cyclic codes over various finite chain rings.</p>","PeriodicalId":10788,"journal":{"name":"Cryptography and Communications","volume":"75 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self dual and MHDR dual cyclic codes over finite chain rings\",\"authors\":\"Monika Dalal, Disha Garg, Sucheta Dutt, Ranjeet Sehmi\",\"doi\":\"10.1007/s12095-024-00731-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work, we establish a minimal set of generators for the dual code of a cyclic code having arbitrary length over a finite chain ring. It is observed that this set of generators forms a minimal strong Grobner basis for the dual code. Using this structure for the dual of a cyclic code, we obtain sufficient as well as necessary conditions for a cyclic code to be a self dual code over a finite chain ring. We enumerate the distinct non-trivial self dual cyclic codes over these rings. Further, we determine all MHDR dual cyclic codes. We provide a few examples of self dual and MHDR dual cyclic codes over various finite chain rings.</p>\",\"PeriodicalId\":10788,\"journal\":{\"name\":\"Cryptography and Communications\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cryptography and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12095-024-00731-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryptography and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12095-024-00731-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们为有限链环上任意长度的循环码的对偶码建立了一组最小的产生子。我们发现,这组生成器构成了对偶码的最小强格罗布纳基。利用循环码对偶码的这种结构,我们得到了循环码成为有限链环上自对偶码的充分条件和必要条件。我们枚举了这些环上不同的非难自对偶循环码。此外,我们还确定了所有 MHDR 对偶循环码。我们提供了一些在各种有限链环上的自对偶码和 MHDR 对偶循环码的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self dual and MHDR dual cyclic codes over finite chain rings

In this work, we establish a minimal set of generators for the dual code of a cyclic code having arbitrary length over a finite chain ring. It is observed that this set of generators forms a minimal strong Grobner basis for the dual code. Using this structure for the dual of a cyclic code, we obtain sufficient as well as necessary conditions for a cyclic code to be a self dual code over a finite chain ring. We enumerate the distinct non-trivial self dual cyclic codes over these rings. Further, we determine all MHDR dual cyclic codes. We provide a few examples of self dual and MHDR dual cyclic codes over various finite chain rings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信