随机近点算法的方差缩小技术

IF 1.6 3区 数学 Q2 MATHEMATICS, APPLIED
Cheik Traoré, Vassilis Apidopoulos, Saverio Salzo, Silvia Villa
{"title":"随机近点算法的方差缩小技术","authors":"Cheik Traoré, Vassilis Apidopoulos, Saverio Salzo, Silvia Villa","doi":"10.1007/s10957-024-02502-6","DOIUrl":null,"url":null,"abstract":"<p>In the context of finite sums minimization, variance reduction techniques are widely used to improve the performance of state-of-the-art stochastic gradient methods. Their practical impact is clear, as well as their theoretical properties. Stochastic proximal point algorithms have been studied as an alternative to stochastic gradient algorithms since they are more stable with respect to the choice of the step size. However, their variance-reduced versions are not as well studied as the gradient ones. In this work, we propose the first unified study of variance reduction techniques for stochastic proximal point algorithms. We introduce a generic stochastic proximal-based algorithm that can be specified to give the proximal version of SVRG, SAGA, and some of their variants. For this algorithm, in the smooth setting, we provide several convergence rates for the iterates and the objective function values, which are faster than those of the vanilla stochastic proximal point algorithm. More specifically, for convex functions, we prove a sublinear convergence rate of <i>O</i>(1/<i>k</i>). In addition, under the Polyak-łojasiewicz condition, we obtain linear convergence rates. Finally, our numerical experiments demonstrate the advantages of the proximal variance reduction methods over their gradient counterparts in terms of the stability with respect to the choice of the step size in most cases, especially for difficult problems.</p>","PeriodicalId":50100,"journal":{"name":"Journal of Optimization Theory and Applications","volume":"5 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variance Reduction Techniques for Stochastic Proximal Point Algorithms\",\"authors\":\"Cheik Traoré, Vassilis Apidopoulos, Saverio Salzo, Silvia Villa\",\"doi\":\"10.1007/s10957-024-02502-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the context of finite sums minimization, variance reduction techniques are widely used to improve the performance of state-of-the-art stochastic gradient methods. Their practical impact is clear, as well as their theoretical properties. Stochastic proximal point algorithms have been studied as an alternative to stochastic gradient algorithms since they are more stable with respect to the choice of the step size. However, their variance-reduced versions are not as well studied as the gradient ones. In this work, we propose the first unified study of variance reduction techniques for stochastic proximal point algorithms. We introduce a generic stochastic proximal-based algorithm that can be specified to give the proximal version of SVRG, SAGA, and some of their variants. For this algorithm, in the smooth setting, we provide several convergence rates for the iterates and the objective function values, which are faster than those of the vanilla stochastic proximal point algorithm. More specifically, for convex functions, we prove a sublinear convergence rate of <i>O</i>(1/<i>k</i>). In addition, under the Polyak-łojasiewicz condition, we obtain linear convergence rates. Finally, our numerical experiments demonstrate the advantages of the proximal variance reduction methods over their gradient counterparts in terms of the stability with respect to the choice of the step size in most cases, especially for difficult problems.</p>\",\"PeriodicalId\":50100,\"journal\":{\"name\":\"Journal of Optimization Theory and Applications\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Optimization Theory and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10957-024-02502-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optimization Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10957-024-02502-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在有限和最小化的背景下,方差缩小技术被广泛用于改善最先进的随机梯度方法的性能。它们的实际影响和理论特性都是显而易见的。随机近点算法作为随机梯度算法的一种替代方法被研究,因为它们在步长的选择上更加稳定。然而,对其方差缩小版本的研究却不如梯度算法。在这项工作中,我们首次提出了随机近点算法方差缩小技术的统一研究。我们介绍了一种基于随机近点的通用算法,它可以指定为 SVRG、SAGA 及其一些变体的近点版本。对于这种算法,在平滑设置中,我们提供了迭代和目标函数值的几种收敛速率,它们比普通随机近似点算法更快。更具体地说,对于凸函数,我们证明了 O(1/k)的亚线性收敛率。此外,在 Polyak-łojasiewicz 条件下,我们获得了线性收敛速率。最后,我们的数值实验证明了近似方差缩小方法在大多数情况下,尤其是在困难问题上,与梯度方法相比,在步长选择的稳定性方面具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Variance Reduction Techniques for Stochastic Proximal Point Algorithms

Variance Reduction Techniques for Stochastic Proximal Point Algorithms

In the context of finite sums minimization, variance reduction techniques are widely used to improve the performance of state-of-the-art stochastic gradient methods. Their practical impact is clear, as well as their theoretical properties. Stochastic proximal point algorithms have been studied as an alternative to stochastic gradient algorithms since they are more stable with respect to the choice of the step size. However, their variance-reduced versions are not as well studied as the gradient ones. In this work, we propose the first unified study of variance reduction techniques for stochastic proximal point algorithms. We introduce a generic stochastic proximal-based algorithm that can be specified to give the proximal version of SVRG, SAGA, and some of their variants. For this algorithm, in the smooth setting, we provide several convergence rates for the iterates and the objective function values, which are faster than those of the vanilla stochastic proximal point algorithm. More specifically, for convex functions, we prove a sublinear convergence rate of O(1/k). In addition, under the Polyak-łojasiewicz condition, we obtain linear convergence rates. Finally, our numerical experiments demonstrate the advantages of the proximal variance reduction methods over their gradient counterparts in terms of the stability with respect to the choice of the step size in most cases, especially for difficult problems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
5.30%
发文量
149
审稿时长
9.9 months
期刊介绍: The Journal of Optimization Theory and Applications is devoted to the publication of carefully selected regular papers, invited papers, survey papers, technical notes, book notices, and forums that cover mathematical optimization techniques and their applications to science and engineering. Typical theoretical areas include linear, nonlinear, mathematical, and dynamic programming. Among the areas of application covered are mathematical economics, mathematical physics and biology, and aerospace, chemical, civil, electrical, and mechanical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信