{"title":"约束压力对颗粒冲击下岩石断裂扩展的影响","authors":"Dong Li, Xing Li, Huaiqian Liu, Yong Liu","doi":"10.1007/s40948-024-00862-x","DOIUrl":null,"url":null,"abstract":"<p>Revealing the influence of confining pressure on the propagation and formation mechanism of rock cracks under particle impact is significant to deep rock excavation. In this study, the three-dimensional fracture reconstruction of the rock after particle impact was carried out by CT scanning, and the stress and crack field evolution of the rock under particle impact were analyzed by PFC2D discrete element numerical simulation. The results demonstrate that after particles impact, a fracture zone and intergranular main crack propagation zone are formed in the rock. The shear stress and tensile stress caused by compressive stress are the main reasons for the formation of the fracture zone, while the formation of the intergranular main crack propagation zone is mainly due to tangential derived tensile stress. The confining pressure induces prestress between rock particles such that the derived tensile stress needs to overcome the initial compressive stress between the particles to form tensile fractures. And the increase in the confining pressure leads to increases in the proportion of shear cracks and friction effects between rock particles, resulting in an increase in energy consumption for the same number of cracks. From a macroscopic perspective, the confining pressure can effectively inhibit the generation of cracks.</p>","PeriodicalId":12813,"journal":{"name":"Geomechanics and Geophysics for Geo-Energy and Geo-Resources","volume":"80 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of confining pressure on rock fracture propagation under particle impact\",\"authors\":\"Dong Li, Xing Li, Huaiqian Liu, Yong Liu\",\"doi\":\"10.1007/s40948-024-00862-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Revealing the influence of confining pressure on the propagation and formation mechanism of rock cracks under particle impact is significant to deep rock excavation. In this study, the three-dimensional fracture reconstruction of the rock after particle impact was carried out by CT scanning, and the stress and crack field evolution of the rock under particle impact were analyzed by PFC2D discrete element numerical simulation. The results demonstrate that after particles impact, a fracture zone and intergranular main crack propagation zone are formed in the rock. The shear stress and tensile stress caused by compressive stress are the main reasons for the formation of the fracture zone, while the formation of the intergranular main crack propagation zone is mainly due to tangential derived tensile stress. The confining pressure induces prestress between rock particles such that the derived tensile stress needs to overcome the initial compressive stress between the particles to form tensile fractures. And the increase in the confining pressure leads to increases in the proportion of shear cracks and friction effects between rock particles, resulting in an increase in energy consumption for the same number of cracks. From a macroscopic perspective, the confining pressure can effectively inhibit the generation of cracks.</p>\",\"PeriodicalId\":12813,\"journal\":{\"name\":\"Geomechanics and Geophysics for Geo-Energy and Geo-Resources\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomechanics and Geophysics for Geo-Energy and Geo-Resources\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40948-024-00862-x\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics and Geophysics for Geo-Energy and Geo-Resources","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40948-024-00862-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Influence of confining pressure on rock fracture propagation under particle impact
Revealing the influence of confining pressure on the propagation and formation mechanism of rock cracks under particle impact is significant to deep rock excavation. In this study, the three-dimensional fracture reconstruction of the rock after particle impact was carried out by CT scanning, and the stress and crack field evolution of the rock under particle impact were analyzed by PFC2D discrete element numerical simulation. The results demonstrate that after particles impact, a fracture zone and intergranular main crack propagation zone are formed in the rock. The shear stress and tensile stress caused by compressive stress are the main reasons for the formation of the fracture zone, while the formation of the intergranular main crack propagation zone is mainly due to tangential derived tensile stress. The confining pressure induces prestress between rock particles such that the derived tensile stress needs to overcome the initial compressive stress between the particles to form tensile fractures. And the increase in the confining pressure leads to increases in the proportion of shear cracks and friction effects between rock particles, resulting in an increase in energy consumption for the same number of cracks. From a macroscopic perspective, the confining pressure can effectively inhibit the generation of cracks.
期刊介绍:
This journal offers original research, new developments, and case studies in geomechanics and geophysics, focused on energy and resources in Earth’s subsurface. Covers theory, experimental results, numerical methods, modeling, engineering, technology and more.