Zhiqiang Cheng, Mingyang Zhang, Xiaona Cheng, Xiaoxiao Ma, Yubing Fan
{"title":"通过适应行为提高气候变化下的要素效率:转基因抗虫棉分析","authors":"Zhiqiang Cheng, Mingyang Zhang, Xiaona Cheng, Xiaoxiao Ma, Yubing Fan","doi":"10.3354/cr01741","DOIUrl":null,"url":null,"abstract":"ABSTRACT: Genetically modified insect-resistant cotton has been recognized as a potential technological means of adapting to climate change, but much remains unknown about how it affects factor efficiency. Using panel data for China from 1993 to 2020, this study explored the impact of genetically modified insect-resistant cotton on the factor efficiency of cotton production under climate change. We found that the adoption of genetically modified insect-resistant cotton significantly increases the output elasticity of pesticides while diminishing that of fertilizer, but has no effect on labor. This is mainly because it reduces the input of pesticides, which is otherwise expected to increase as a result of pest outbreaks caused by climate change. In contrast, it increases fertilizer input and thus reduces the output elasticity of fertilizer. Additionally, the effects on pesticide and fertilizer elasticity were weaker in the Yangtze River basin and northwest China, but stronger in the Yellow River basin. These findings provide a better understanding of how agricultural production factor efficiency responds to the adoption of adaptive behaviors under climate change. They can also serve as a reference to assist farmers in evaluating the effectiveness of adaptive behaviors and optimizing resource allocation for climate change adaptation.","PeriodicalId":10438,"journal":{"name":"Climate Research","volume":"40 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving factor efficiency under climate change through adaptive behavior: analysis of genetically modified insect-resistant cotton\",\"authors\":\"Zhiqiang Cheng, Mingyang Zhang, Xiaona Cheng, Xiaoxiao Ma, Yubing Fan\",\"doi\":\"10.3354/cr01741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT: Genetically modified insect-resistant cotton has been recognized as a potential technological means of adapting to climate change, but much remains unknown about how it affects factor efficiency. Using panel data for China from 1993 to 2020, this study explored the impact of genetically modified insect-resistant cotton on the factor efficiency of cotton production under climate change. We found that the adoption of genetically modified insect-resistant cotton significantly increases the output elasticity of pesticides while diminishing that of fertilizer, but has no effect on labor. This is mainly because it reduces the input of pesticides, which is otherwise expected to increase as a result of pest outbreaks caused by climate change. In contrast, it increases fertilizer input and thus reduces the output elasticity of fertilizer. Additionally, the effects on pesticide and fertilizer elasticity were weaker in the Yangtze River basin and northwest China, but stronger in the Yellow River basin. These findings provide a better understanding of how agricultural production factor efficiency responds to the adoption of adaptive behaviors under climate change. They can also serve as a reference to assist farmers in evaluating the effectiveness of adaptive behaviors and optimizing resource allocation for climate change adaptation.\",\"PeriodicalId\":10438,\"journal\":{\"name\":\"Climate Research\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Climate Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3354/cr01741\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3354/cr01741","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Improving factor efficiency under climate change through adaptive behavior: analysis of genetically modified insect-resistant cotton
ABSTRACT: Genetically modified insect-resistant cotton has been recognized as a potential technological means of adapting to climate change, but much remains unknown about how it affects factor efficiency. Using panel data for China from 1993 to 2020, this study explored the impact of genetically modified insect-resistant cotton on the factor efficiency of cotton production under climate change. We found that the adoption of genetically modified insect-resistant cotton significantly increases the output elasticity of pesticides while diminishing that of fertilizer, but has no effect on labor. This is mainly because it reduces the input of pesticides, which is otherwise expected to increase as a result of pest outbreaks caused by climate change. In contrast, it increases fertilizer input and thus reduces the output elasticity of fertilizer. Additionally, the effects on pesticide and fertilizer elasticity were weaker in the Yangtze River basin and northwest China, but stronger in the Yellow River basin. These findings provide a better understanding of how agricultural production factor efficiency responds to the adoption of adaptive behaviors under climate change. They can also serve as a reference to assist farmers in evaluating the effectiveness of adaptive behaviors and optimizing resource allocation for climate change adaptation.
期刊介绍:
Basic and applied research devoted to all aspects of climate – past, present and future. Investigation of the reciprocal influences between climate and organisms (including climate effects on individuals, populations, ecological communities and entire ecosystems), as well as between climate and human societies. CR invites high-quality Research Articles, Reviews, Notes and Comments/Reply Comments (see Clim Res 20:187), CR SPECIALS and Opinion Pieces. For details see the Guidelines for Authors. Papers may be concerned with:
-Interactions of climate with organisms, populations, ecosystems, and human societies
-Short- and long-term changes in climatic elements, such as humidity and precipitation, temperature, wind velocity and storms, radiation, carbon dioxide, trace gases, ozone, UV radiation
-Human reactions to climate change; health, morbidity and mortality; clothing and climate; indoor climate management
-Climate effects on biotic diversity. Paleoecology, species abundance and extinction, natural resources and water levels
-Historical case studies, including paleoecology and paleoclimatology
-Analysis of extreme climatic events, their physicochemical properties and their time–space dynamics. Climatic hazards
-Land-surface climatology. Soil degradation, deforestation, desertification
-Assessment and implementation of adaptations and response options
-Applications of climate models and modelled future climate scenarios. Methodology in model development and application