局部地面沉降弹性地基上埋设管道的分析方法

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Fu-chen Guo, Yan-ping Lv, Fu-quan Chen, Dao-liang Lai
{"title":"局部地面沉降弹性地基上埋设管道的分析方法","authors":"Fu-chen Guo, Yan-ping Lv, Fu-quan Chen, Dao-liang Lai","doi":"10.1007/s12205-024-1462-0","DOIUrl":null,"url":null,"abstract":"<p>This study addresses the issue of localized ground subsidence and its effect on buried pipelines. Timoshenko beam model, placed on a Pasternak foundation, is used to analyze the internal force response of buried pipelines under foundation subsidence. The load on the pipeline, resulting from localized ground subsidence, is assumed to be symmetric. The load distribution on the buried section of the pipeline is represented using a McLaurin series. Analytical solutions for the deflection and bending moment of the pipeline under arbitrary symmetrical loading are derived based on the theory of elastic foundation beams. Additionally, the accuracy of the analytical solutions is verified through comparisons with experimental studies, finite element analysis, and existing theories. In the analysis, the shear modulus of the Timoshenko beam is set to infinity, resulting in the degeneration of the model into the Euler-Bernoulli beam. The effect of the shear modulus and diameter-span ratio (<i>D</i>/<i>l</i>) of the Timoshenko beam is investigated in the parameter analysis, and the applicability for both beam models is determined. The results indicate that, for buried pipelines with a diameter-span ratio greater than 0.1, the Timoshenko beam model provides more accurate deflection calculations than the Euler-Bernoulli beam model.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical Method for the Buried Pipeline on an Elastic Foundation with Local Ground Subsidence\",\"authors\":\"Fu-chen Guo, Yan-ping Lv, Fu-quan Chen, Dao-liang Lai\",\"doi\":\"10.1007/s12205-024-1462-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study addresses the issue of localized ground subsidence and its effect on buried pipelines. Timoshenko beam model, placed on a Pasternak foundation, is used to analyze the internal force response of buried pipelines under foundation subsidence. The load on the pipeline, resulting from localized ground subsidence, is assumed to be symmetric. The load distribution on the buried section of the pipeline is represented using a McLaurin series. Analytical solutions for the deflection and bending moment of the pipeline under arbitrary symmetrical loading are derived based on the theory of elastic foundation beams. Additionally, the accuracy of the analytical solutions is verified through comparisons with experimental studies, finite element analysis, and existing theories. In the analysis, the shear modulus of the Timoshenko beam is set to infinity, resulting in the degeneration of the model into the Euler-Bernoulli beam. The effect of the shear modulus and diameter-span ratio (<i>D</i>/<i>l</i>) of the Timoshenko beam is investigated in the parameter analysis, and the applicability for both beam models is determined. The results indicate that, for buried pipelines with a diameter-span ratio greater than 0.1, the Timoshenko beam model provides more accurate deflection calculations than the Euler-Bernoulli beam model.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12205-024-1462-0\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12205-024-1462-0","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了局部地面沉降问题及其对埋地管道的影响。采用放置在帕斯捷尔纳克地基上的 Timoshenko 梁模型,分析地基下沉情况下埋地管道的内力响应。假定局部地面沉降对管道产生的荷载是对称的。管道埋设部分的荷载分布采用 McLaurin 序列表示。根据弹性地基梁理论,得出了管道在任意对称荷载作用下的挠度和弯矩的解析解。此外,通过与实验研究、有限元分析和现有理论的比较,验证了分析解的准确性。在分析中,季莫申科梁的剪切模量被设为无穷大,导致模型退化为欧拉-伯努利梁。参数分析中研究了季莫申科梁的剪切模量和直径跨度比 (D/l) 的影响,并确定了两种梁模型的适用性。结果表明,对于直径跨度比大于 0.1 的埋地管道,季莫申科梁模型比欧拉-伯努利梁模型能提供更精确的挠度计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analytical Method for the Buried Pipeline on an Elastic Foundation with Local Ground Subsidence

This study addresses the issue of localized ground subsidence and its effect on buried pipelines. Timoshenko beam model, placed on a Pasternak foundation, is used to analyze the internal force response of buried pipelines under foundation subsidence. The load on the pipeline, resulting from localized ground subsidence, is assumed to be symmetric. The load distribution on the buried section of the pipeline is represented using a McLaurin series. Analytical solutions for the deflection and bending moment of the pipeline under arbitrary symmetrical loading are derived based on the theory of elastic foundation beams. Additionally, the accuracy of the analytical solutions is verified through comparisons with experimental studies, finite element analysis, and existing theories. In the analysis, the shear modulus of the Timoshenko beam is set to infinity, resulting in the degeneration of the model into the Euler-Bernoulli beam. The effect of the shear modulus and diameter-span ratio (D/l) of the Timoshenko beam is investigated in the parameter analysis, and the applicability for both beam models is determined. The results indicate that, for buried pipelines with a diameter-span ratio greater than 0.1, the Timoshenko beam model provides more accurate deflection calculations than the Euler-Bernoulli beam model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信