Xianda Feng, Yingrui Lu, Bin Lu, Chao Yuan, Shuchen Li
{"title":"基于内聚力模型的复合材料壳衬结构的力学行为","authors":"Xianda Feng, Yingrui Lu, Bin Lu, Chao Yuan, Shuchen Li","doi":"10.1007/s12205-024-0470-4","DOIUrl":null,"url":null,"abstract":"<p>With the development of tunnel construction, the number of composite-lined tunnels with spray membrane waterproofing is gradually increasing. To clarify the mechanical properties of composite shell lining (CSL) structures, mechanical parameters of interlayer waterproofing membrane materials were determined by conducting uniaxial tensile, interlayer bond tensile, and interlayer bond shear tests on waterproofing membrane materials with different water-cement ratios. The cohesion model is used to simulate the bonding characteristics between waterproofing membranes and concrete to develop numerical simulation calculation models of CSL and double shell lining (DSL) structures. The results of indoor tests and numerical simulations confirmed the feasibility of using a cohesion model to characterize the interlayer shear mechanical properties of the waterproofing membrane. Relative to the DSL, the stresses of the primary support of CSL and key cross-sections of the secondary lining are more similar owing to the synergistic force between the primary support and secondary lining caused by the bonding characteristics of the waterproofing membrane, resulting in the formation of a type of composite load-bearing structure, which improves the utilization rate of the primary support and reduces the thickness of the secondary lining. Therefore, the CSL structure based on spray membrane waterproofing has broad application prospects.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical Behavior of Composite Shell Lining Structures Based on Cohesion Models\",\"authors\":\"Xianda Feng, Yingrui Lu, Bin Lu, Chao Yuan, Shuchen Li\",\"doi\":\"10.1007/s12205-024-0470-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With the development of tunnel construction, the number of composite-lined tunnels with spray membrane waterproofing is gradually increasing. To clarify the mechanical properties of composite shell lining (CSL) structures, mechanical parameters of interlayer waterproofing membrane materials were determined by conducting uniaxial tensile, interlayer bond tensile, and interlayer bond shear tests on waterproofing membrane materials with different water-cement ratios. The cohesion model is used to simulate the bonding characteristics between waterproofing membranes and concrete to develop numerical simulation calculation models of CSL and double shell lining (DSL) structures. The results of indoor tests and numerical simulations confirmed the feasibility of using a cohesion model to characterize the interlayer shear mechanical properties of the waterproofing membrane. Relative to the DSL, the stresses of the primary support of CSL and key cross-sections of the secondary lining are more similar owing to the synergistic force between the primary support and secondary lining caused by the bonding characteristics of the waterproofing membrane, resulting in the formation of a type of composite load-bearing structure, which improves the utilization rate of the primary support and reduces the thickness of the secondary lining. Therefore, the CSL structure based on spray membrane waterproofing has broad application prospects.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12205-024-0470-4\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12205-024-0470-4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Mechanical Behavior of Composite Shell Lining Structures Based on Cohesion Models
With the development of tunnel construction, the number of composite-lined tunnels with spray membrane waterproofing is gradually increasing. To clarify the mechanical properties of composite shell lining (CSL) structures, mechanical parameters of interlayer waterproofing membrane materials were determined by conducting uniaxial tensile, interlayer bond tensile, and interlayer bond shear tests on waterproofing membrane materials with different water-cement ratios. The cohesion model is used to simulate the bonding characteristics between waterproofing membranes and concrete to develop numerical simulation calculation models of CSL and double shell lining (DSL) structures. The results of indoor tests and numerical simulations confirmed the feasibility of using a cohesion model to characterize the interlayer shear mechanical properties of the waterproofing membrane. Relative to the DSL, the stresses of the primary support of CSL and key cross-sections of the secondary lining are more similar owing to the synergistic force between the primary support and secondary lining caused by the bonding characteristics of the waterproofing membrane, resulting in the formation of a type of composite load-bearing structure, which improves the utilization rate of the primary support and reduces the thickness of the secondary lining. Therefore, the CSL structure based on spray membrane waterproofing has broad application prospects.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.