避免三期算术级数的阶次结构特征

Order Pub Date : 2024-08-02 DOI:10.1007/s11083-024-09677-7
Minoru Hirose, Shingo Saito
{"title":"避免三期算术级数的阶次结构特征","authors":"Minoru Hirose, Shingo Saito","doi":"10.1007/s11083-024-09677-7","DOIUrl":null,"url":null,"abstract":"<p>It is known that the set of all nonnegative integers may be equipped with a total order that is chaotic in the sense that there is no monotone three-term arithmetic progressions. Such chaotic order must be so complicated that the resulting ordered set cannot be order isomorphic to the set of all nonnegative integers or the set of all integers with the standard order. In this paper, we completely characterize order structures of chaotic orders on the set of all nonnegative integers, as well as on the set of all integers and on the set of all rational numbers.</p>","PeriodicalId":501237,"journal":{"name":"Order","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of Order Structures Avoiding Three-term Arithmetic Progressions\",\"authors\":\"Minoru Hirose, Shingo Saito\",\"doi\":\"10.1007/s11083-024-09677-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>It is known that the set of all nonnegative integers may be equipped with a total order that is chaotic in the sense that there is no monotone three-term arithmetic progressions. Such chaotic order must be so complicated that the resulting ordered set cannot be order isomorphic to the set of all nonnegative integers or the set of all integers with the standard order. In this paper, we completely characterize order structures of chaotic orders on the set of all nonnegative integers, as well as on the set of all integers and on the set of all rational numbers.</p>\",\"PeriodicalId\":501237,\"journal\":{\"name\":\"Order\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Order\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11083-024-09677-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Order","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11083-024-09677-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,所有非负整数集合可能具有一个总序,这个总序是混乱的,即不存在单调的三项算术级数。这种混沌秩一定非常复杂,以至于所得到的有序集合不能与所有非负整数集合或具有标准秩的所有整数集合同构。在本文中,我们完全描述了所有非负整数集合、所有整数集合和所有有理数集合上混沌有序的有序结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterization of Order Structures Avoiding Three-term Arithmetic Progressions

It is known that the set of all nonnegative integers may be equipped with a total order that is chaotic in the sense that there is no monotone three-term arithmetic progressions. Such chaotic order must be so complicated that the resulting ordered set cannot be order isomorphic to the set of all nonnegative integers or the set of all integers with the standard order. In this paper, we completely characterize order structures of chaotic orders on the set of all nonnegative integers, as well as on the set of all integers and on the set of all rational numbers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信