需要关注基因变异的完善

Omar Abdelwahab, Davoud Torkamaneh
{"title":"需要关注基因变异的完善","authors":"Omar Abdelwahab, Davoud Torkamaneh","doi":"arxiv-2408.00659","DOIUrl":null,"url":null,"abstract":"Variant calling refinement is crucial for distinguishing true genetic\nvariants from technical artifacts in high-throughput sequencing data. Manual\nreview is time-consuming while heuristic filtering often lacks optimal\nsolutions. Traditional variant calling methods often struggle with accuracy,\nespecially in regions of low read coverage, leading to false-positive or\nfalse-negative calls. Here, we introduce VariantTransformer, a\nTransformer-based deep learning model, designed to automate variant calling\nrefinement directly from VCF files in low-coverage data (10-15X).\nVariantTransformer, trained on two million variants, including SNPs and short\nInDels, from low-coverage sequencing data, achieved an accuracy of 89.26% and a\nROC AUC of 0.88. When integrated into conventional variant calling pipelines,\nVariantTransformer outperformed traditional heuristic filters and approached\nthe performance of state-of-the-art AI-based variant callers like DeepVariant.\nComparative analysis demonstrated VariantTransformer's superiority in\nfunctionality, variant type coverage, training size, and input data type.\nVariantTransformer represents a significant advancement in variant calling\nrefinement for low-coverage genomic studies.","PeriodicalId":501070,"journal":{"name":"arXiv - QuanBio - Genomics","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Refinement of genetic variants needs attention\",\"authors\":\"Omar Abdelwahab, Davoud Torkamaneh\",\"doi\":\"arxiv-2408.00659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Variant calling refinement is crucial for distinguishing true genetic\\nvariants from technical artifacts in high-throughput sequencing data. Manual\\nreview is time-consuming while heuristic filtering often lacks optimal\\nsolutions. Traditional variant calling methods often struggle with accuracy,\\nespecially in regions of low read coverage, leading to false-positive or\\nfalse-negative calls. Here, we introduce VariantTransformer, a\\nTransformer-based deep learning model, designed to automate variant calling\\nrefinement directly from VCF files in low-coverage data (10-15X).\\nVariantTransformer, trained on two million variants, including SNPs and short\\nInDels, from low-coverage sequencing data, achieved an accuracy of 89.26% and a\\nROC AUC of 0.88. When integrated into conventional variant calling pipelines,\\nVariantTransformer outperformed traditional heuristic filters and approached\\nthe performance of state-of-the-art AI-based variant callers like DeepVariant.\\nComparative analysis demonstrated VariantTransformer's superiority in\\nfunctionality, variant type coverage, training size, and input data type.\\nVariantTransformer represents a significant advancement in variant calling\\nrefinement for low-coverage genomic studies.\",\"PeriodicalId\":501070,\"journal\":{\"name\":\"arXiv - QuanBio - Genomics\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Genomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.00659\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.00659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

要从高通量测序数据中区分出真正的遗传变异和技术假象,变异调用的完善至关重要。人工审查非常耗时,而启发式过滤往往缺乏最佳解决方案。传统的变异体调用方法在准确性方面往往存在困难,尤其是在低读数覆盖率区域,从而导致假阳性或假阴性调用。在这里,我们介绍了VariantTransformer,这是一种基于Transformer的深度学习模型,旨在直接从低覆盖率数据(10-15X)的VCF文件中自动进行变体调用细化。VariantTransformer在低覆盖率测序数据的200万个变体(包括SNPs和shortInDels)上进行了训练,准确率达到了89.26%,ROC AUC为0.88。比较分析表明,VariantTransformer 在功能、变异类型覆盖率、训练规模和输入数据类型方面都具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Refinement of genetic variants needs attention
Variant calling refinement is crucial for distinguishing true genetic variants from technical artifacts in high-throughput sequencing data. Manual review is time-consuming while heuristic filtering often lacks optimal solutions. Traditional variant calling methods often struggle with accuracy, especially in regions of low read coverage, leading to false-positive or false-negative calls. Here, we introduce VariantTransformer, a Transformer-based deep learning model, designed to automate variant calling refinement directly from VCF files in low-coverage data (10-15X). VariantTransformer, trained on two million variants, including SNPs and short InDels, from low-coverage sequencing data, achieved an accuracy of 89.26% and a ROC AUC of 0.88. When integrated into conventional variant calling pipelines, VariantTransformer outperformed traditional heuristic filters and approached the performance of state-of-the-art AI-based variant callers like DeepVariant. Comparative analysis demonstrated VariantTransformer's superiority in functionality, variant type coverage, training size, and input data type. VariantTransformer represents a significant advancement in variant calling refinement for low-coverage genomic studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信