希尔伯特模态变的同调环

IF 1 3区 数学 Q1 MATHEMATICS
Simon Cooper
{"title":"希尔伯特模态变的同调环","authors":"Simon Cooper","doi":"10.1007/s00209-024-03560-2","DOIUrl":null,"url":null,"abstract":"<p>In this note we compute the tautological ring of Hilbert modular varieties at an unramified prime. This is the first computation of the tautological ring of a non-compactified Shimura variety beyond the case of the Siegel modular variety <span>\\(\\mathcal {A}_{g}\\)</span>. While the method generalises that of van der Geer for <span>\\(\\mathcal {A}_{g}\\)</span>, there is an added difficulty in that the highest degree socle has <span>\\(d&gt;1\\)</span> generators rather than 1. To deal with this we prove that the <i>d</i> cycles obtained by taking closures of codimension one Ekedahl–Oort strata are linearly independent. In contrast, in the case of <span>\\(\\mathcal {A}_{g}\\)</span> it suffices to prove that the class of the <i>p</i>-rank zero locus is non-zero. The limitations of this method for computing the tautological ring of other non-compactified Shimura varieties are demonstrated with an instructive example.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tautological rings of Hilbert modular varieties\",\"authors\":\"Simon Cooper\",\"doi\":\"10.1007/s00209-024-03560-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this note we compute the tautological ring of Hilbert modular varieties at an unramified prime. This is the first computation of the tautological ring of a non-compactified Shimura variety beyond the case of the Siegel modular variety <span>\\\\(\\\\mathcal {A}_{g}\\\\)</span>. While the method generalises that of van der Geer for <span>\\\\(\\\\mathcal {A}_{g}\\\\)</span>, there is an added difficulty in that the highest degree socle has <span>\\\\(d&gt;1\\\\)</span> generators rather than 1. To deal with this we prove that the <i>d</i> cycles obtained by taking closures of codimension one Ekedahl–Oort strata are linearly independent. In contrast, in the case of <span>\\\\(\\\\mathcal {A}_{g}\\\\)</span> it suffices to prove that the class of the <i>p</i>-rank zero locus is non-zero. The limitations of this method for computing the tautological ring of other non-compactified Shimura varieties are demonstrated with an instructive example.</p>\",\"PeriodicalId\":18278,\"journal\":{\"name\":\"Mathematische Zeitschrift\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Zeitschrift\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00209-024-03560-2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03560-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在这篇论文中,我们计算了未夯素的希尔伯特模块综的同调环。这是在西格尔模态变种 \(\mathcal {A}_{g}\) 的情况之外,第一次计算非紧密化希村变种的同调环。为了解决这个问题,我们证明了通过对标度为一的埃克达尔-奥尔特层(Ekedahl-Oort strata)进行闭合而得到的 d 个循环是线性独立的。相反,在 \(\mathcal {A}_{g}\) 的情况下,只需证明 p 级零位置的类是非零的即可。通过一个有启发性的例子,证明了这种方法在计算其他非紧密化志村变分的同调环时的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tautological rings of Hilbert modular varieties

In this note we compute the tautological ring of Hilbert modular varieties at an unramified prime. This is the first computation of the tautological ring of a non-compactified Shimura variety beyond the case of the Siegel modular variety \(\mathcal {A}_{g}\). While the method generalises that of van der Geer for \(\mathcal {A}_{g}\), there is an added difficulty in that the highest degree socle has \(d>1\) generators rather than 1. To deal with this we prove that the d cycles obtained by taking closures of codimension one Ekedahl–Oort strata are linearly independent. In contrast, in the case of \(\mathcal {A}_{g}\) it suffices to prove that the class of the p-rank zero locus is non-zero. The limitations of this method for computing the tautological ring of other non-compactified Shimura varieties are demonstrated with an instructive example.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
236
审稿时长
3-6 weeks
期刊介绍: "Mathematische Zeitschrift" is devoted to pure and applied mathematics. Reviews, problems etc. will not be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信