整合跨组织和个体的空间分辨转录组学数据:挑战与机遇

Boyi Guo, Wodan Ling, Sang Ho Kwon, Pratibha Panwar, Shila Ghazanfar, Keri Martinowich, Stephanie C. Hicks
{"title":"整合跨组织和个体的空间分辨转录组学数据:挑战与机遇","authors":"Boyi Guo, Wodan Ling, Sang Ho Kwon, Pratibha Panwar, Shila Ghazanfar, Keri Martinowich, Stephanie C. Hicks","doi":"arxiv-2408.00367","DOIUrl":null,"url":null,"abstract":"Advances in spatially-resolved transcriptomics (SRT) technologies have\npropelled the development of new computational analysis methods to unlock\nbiological insights. As the cost of generating these data decreases, these\ntechnologies provide an exciting opportunity to create large-scale atlases that\nintegrate SRT data across multiple tissues, individuals, species, or phenotypes\nto perform population-level analyses. Here, we describe unique challenges of\nvarying spatial resolutions in SRT data, as well as highlight the opportunities\nfor standardized preprocessing methods along with computational algorithms\namenable to atlas-scale datasets leading to improved sensitivity and\nreproducibility in the future.","PeriodicalId":501070,"journal":{"name":"arXiv - QuanBio - Genomics","volume":"75 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating spatially-resolved transcriptomics data across tissues and individuals: challenges and opportunities\",\"authors\":\"Boyi Guo, Wodan Ling, Sang Ho Kwon, Pratibha Panwar, Shila Ghazanfar, Keri Martinowich, Stephanie C. Hicks\",\"doi\":\"arxiv-2408.00367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advances in spatially-resolved transcriptomics (SRT) technologies have\\npropelled the development of new computational analysis methods to unlock\\nbiological insights. As the cost of generating these data decreases, these\\ntechnologies provide an exciting opportunity to create large-scale atlases that\\nintegrate SRT data across multiple tissues, individuals, species, or phenotypes\\nto perform population-level analyses. Here, we describe unique challenges of\\nvarying spatial resolutions in SRT data, as well as highlight the opportunities\\nfor standardized preprocessing methods along with computational algorithms\\namenable to atlas-scale datasets leading to improved sensitivity and\\nreproducibility in the future.\",\"PeriodicalId\":501070,\"journal\":{\"name\":\"arXiv - QuanBio - Genomics\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Genomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.00367\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.00367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

空间分辨转录组学(SRT)技术的进步推动了新计算分析方法的发展,从而揭示了生物学的奥秘。随着生成这些数据的成本降低,这些技术提供了一个令人兴奋的机会来创建大规模图谱,整合跨多个组织、个体、物种或表型的 SRT 数据,以进行种群水平的分析。在这里,我们描述了 SRT 数据空间分辨率不同所带来的独特挑战,并强调了标准化预处理方法以及适用于图集规模数据集的计算算法所带来的机遇,从而在未来提高灵敏度和可重复性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrating spatially-resolved transcriptomics data across tissues and individuals: challenges and opportunities
Advances in spatially-resolved transcriptomics (SRT) technologies have propelled the development of new computational analysis methods to unlock biological insights. As the cost of generating these data decreases, these technologies provide an exciting opportunity to create large-scale atlases that integrate SRT data across multiple tissues, individuals, species, or phenotypes to perform population-level analyses. Here, we describe unique challenges of varying spatial resolutions in SRT data, as well as highlight the opportunities for standardized preprocessing methods along with computational algorithms amenable to atlas-scale datasets leading to improved sensitivity and reproducibility in the future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信