Ext 和 Tor 上的同调算子环

Samuel Alvite, Javier Majadas
{"title":"Ext 和 Tor 上的同调算子环","authors":"Samuel Alvite, Javier Majadas","doi":"arxiv-2408.00730","DOIUrl":null,"url":null,"abstract":"For any homomorphism of commutative rings $A \\to B$ and a $B$-module $M$, we\nconstruct a structure of graded $\\mathrm{S}_B^{\\ast}\\mathrm{H}^1(A,B,B)$-module\non $\\mathrm{Ext}_B^{\\ast}(M,M)$ and $\\mathrm{Tor}_{\\ast}^B(M,M)$, where\n$\\mathrm{H}^1(A,B,B)$ is the first Andr\\'e-Quillen cohomology module and\n$\\mathrm{S}^{\\ast}$ denotes the symmetric algebra. This structure generalizes\nthe well known structures of $B[X_1, \\dots, X_n]$-module constructed by\nGulliksen when $B=R/I$ and $I$ is generated by a regular sequence of length $n$\n(in this case, $\\mathrm{S}_B^{\\ast}\\mathrm{H}^1(R,B,B)= \\mathrm{S}_B^{\\ast}\n\\left(\\widehat{I/I^2}\\right)=B[X_1, \\dots, X_n]$), but the main interest is\nthat for any such $B=R/I$, Gulliksen operations factorize through the ring\n$\\mathrm{S}_B^{\\ast}\\mathrm{H}^1(A,B,B)$ for any ring $A$ such that $R$ is an\n$A$-algebra, allowing us to think that, for some purposes, in order to define\nthese cohomological operations, Andr\\'e-Quillen cohomology is a more natural\nchoice than the normal module $\\widehat{I/I^2}$.","PeriodicalId":501475,"journal":{"name":"arXiv - MATH - Commutative Algebra","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A ring of cohomological operators on Ext and Tor\",\"authors\":\"Samuel Alvite, Javier Majadas\",\"doi\":\"arxiv-2408.00730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For any homomorphism of commutative rings $A \\\\to B$ and a $B$-module $M$, we\\nconstruct a structure of graded $\\\\mathrm{S}_B^{\\\\ast}\\\\mathrm{H}^1(A,B,B)$-module\\non $\\\\mathrm{Ext}_B^{\\\\ast}(M,M)$ and $\\\\mathrm{Tor}_{\\\\ast}^B(M,M)$, where\\n$\\\\mathrm{H}^1(A,B,B)$ is the first Andr\\\\'e-Quillen cohomology module and\\n$\\\\mathrm{S}^{\\\\ast}$ denotes the symmetric algebra. This structure generalizes\\nthe well known structures of $B[X_1, \\\\dots, X_n]$-module constructed by\\nGulliksen when $B=R/I$ and $I$ is generated by a regular sequence of length $n$\\n(in this case, $\\\\mathrm{S}_B^{\\\\ast}\\\\mathrm{H}^1(R,B,B)= \\\\mathrm{S}_B^{\\\\ast}\\n\\\\left(\\\\widehat{I/I^2}\\\\right)=B[X_1, \\\\dots, X_n]$), but the main interest is\\nthat for any such $B=R/I$, Gulliksen operations factorize through the ring\\n$\\\\mathrm{S}_B^{\\\\ast}\\\\mathrm{H}^1(A,B,B)$ for any ring $A$ such that $R$ is an\\n$A$-algebra, allowing us to think that, for some purposes, in order to define\\nthese cohomological operations, Andr\\\\'e-Quillen cohomology is a more natural\\nchoice than the normal module $\\\\widehat{I/I^2}$.\",\"PeriodicalId\":501475,\"journal\":{\"name\":\"arXiv - MATH - Commutative Algebra\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Commutative Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.00730\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Commutative Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.00730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于任意交换环的同态 $A\to B$ 和一个 $B$ 模块 $M$,我们在 $\mathrm{S}_B^{ast}\mathrm{H}^1(A,B,B)$ 模块上构建一个分级 $\mathrm{Ext}_B^{\ast}(M. M)$ 和 $\mathrm{Tor}_{\ast}^B(M,M)$ 的结构、M)$ 和 $\mathrm{Tor}_{\ast}^B(M,M)$, 其中$mathrm{H}^1(A,B,B)$ 是第一个 Andr\'e-Quillen 同调模块,$mathrm{S}^{\ast}$ 表示对称代数。当 $B=R/I$ 和 $I$ 由长度为 $n$ 的正则序列生成时,这种结构概括了古利克森所构建的 $B[X_1,\dots,X_n]$-模块的已知结构(在这种情况下,$B[X_1,\dots,X_n]$-模块由长度为 $n$ 的正则序列生成)、$mathrm{S}_B^{\ast}\mathrm{H}^1(R,B,B)=\mathrm{S}_B^{\ast}\left(\widehat{I/I^2}\right)=B[X_1, \dots,X_n]$),但主要的兴趣在于对于任何这样的 $B=R/I$、古利克森运算通过环$mathrm{S}_B^{\ast}\mathrm{H}^1(A,B,B)$对任意环$A$进行因式分解,使得我们可以认为,出于某些目的,为了定义这些同调运算,安德鲁-奎伦同调是比普通模块$\widehat{I/I^2}$更自然的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A ring of cohomological operators on Ext and Tor
For any homomorphism of commutative rings $A \to B$ and a $B$-module $M$, we construct a structure of graded $\mathrm{S}_B^{\ast}\mathrm{H}^1(A,B,B)$-module on $\mathrm{Ext}_B^{\ast}(M,M)$ and $\mathrm{Tor}_{\ast}^B(M,M)$, where $\mathrm{H}^1(A,B,B)$ is the first Andr\'e-Quillen cohomology module and $\mathrm{S}^{\ast}$ denotes the symmetric algebra. This structure generalizes the well known structures of $B[X_1, \dots, X_n]$-module constructed by Gulliksen when $B=R/I$ and $I$ is generated by a regular sequence of length $n$ (in this case, $\mathrm{S}_B^{\ast}\mathrm{H}^1(R,B,B)= \mathrm{S}_B^{\ast} \left(\widehat{I/I^2}\right)=B[X_1, \dots, X_n]$), but the main interest is that for any such $B=R/I$, Gulliksen operations factorize through the ring $\mathrm{S}_B^{\ast}\mathrm{H}^1(A,B,B)$ for any ring $A$ such that $R$ is an $A$-algebra, allowing us to think that, for some purposes, in order to define these cohomological operations, Andr\'e-Quillen cohomology is a more natural choice than the normal module $\widehat{I/I^2}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信