{"title":"包含 $Ω$ 离散骨架的最小子顶","authors":"Matí as Menni","doi":"arxiv-2408.00514","DOIUrl":null,"url":null,"abstract":"Let $p: \\mathcal{E} \\to \\mathcal{S}$ be a pre-cohesive geometric morphism. We\nshow that the least subtopos of $\\mathcal{E}$ containing both the subcategories\n$p^*: \\mathcal{S} \\to \\mathcal{E}$ and $p^!: \\mathcal{S} \\to \\mathcal{E}$\nexists, and that it coincides with the least subtopos containing $p^*2$, where\n2 denotes the subobject classifier of $\\mathcal{S}$.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":"105 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The least subtopos containing the discrete skeleton of $Ω$\",\"authors\":\"Matí as Menni\",\"doi\":\"arxiv-2408.00514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $p: \\\\mathcal{E} \\\\to \\\\mathcal{S}$ be a pre-cohesive geometric morphism. We\\nshow that the least subtopos of $\\\\mathcal{E}$ containing both the subcategories\\n$p^*: \\\\mathcal{S} \\\\to \\\\mathcal{E}$ and $p^!: \\\\mathcal{S} \\\\to \\\\mathcal{E}$\\nexists, and that it coincides with the least subtopos containing $p^*2$, where\\n2 denotes the subobject classifier of $\\\\mathcal{S}$.\",\"PeriodicalId\":501135,\"journal\":{\"name\":\"arXiv - MATH - Category Theory\",\"volume\":\"105 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Category Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.00514\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.00514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The least subtopos containing the discrete skeleton of $Ω$
Let $p: \mathcal{E} \to \mathcal{S}$ be a pre-cohesive geometric morphism. We
show that the least subtopos of $\mathcal{E}$ containing both the subcategories
$p^*: \mathcal{S} \to \mathcal{E}$ and $p^!: \mathcal{S} \to \mathcal{E}$
exists, and that it coincides with the least subtopos containing $p^*2$, where
2 denotes the subobject classifier of $\mathcal{S}$.