包含 $Ω$ 离散骨架的最小子顶

Matí as Menni
{"title":"包含 $Ω$ 离散骨架的最小子顶","authors":"Matí as Menni","doi":"arxiv-2408.00514","DOIUrl":null,"url":null,"abstract":"Let $p: \\mathcal{E} \\to \\mathcal{S}$ be a pre-cohesive geometric morphism. We\nshow that the least subtopos of $\\mathcal{E}$ containing both the subcategories\n$p^*: \\mathcal{S} \\to \\mathcal{E}$ and $p^!: \\mathcal{S} \\to \\mathcal{E}$\nexists, and that it coincides with the least subtopos containing $p^*2$, where\n2 denotes the subobject classifier of $\\mathcal{S}$.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":"105 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The least subtopos containing the discrete skeleton of $Ω$\",\"authors\":\"Matí as Menni\",\"doi\":\"arxiv-2408.00514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $p: \\\\mathcal{E} \\\\to \\\\mathcal{S}$ be a pre-cohesive geometric morphism. We\\nshow that the least subtopos of $\\\\mathcal{E}$ containing both the subcategories\\n$p^*: \\\\mathcal{S} \\\\to \\\\mathcal{E}$ and $p^!: \\\\mathcal{S} \\\\to \\\\mathcal{E}$\\nexists, and that it coincides with the least subtopos containing $p^*2$, where\\n2 denotes the subobject classifier of $\\\\mathcal{S}$.\",\"PeriodicalId\":501135,\"journal\":{\"name\":\"arXiv - MATH - Category Theory\",\"volume\":\"105 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Category Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.00514\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.00514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 $p:\到\到 \mathcal{S}$ 是一个前粘合几何态射。假设 $\mathcal{E}$ 的最小子表同时包含子类$p^*:\to \mathcal{E}$ 和 $p^!\mathcal{S} \to \mathcal{E}$存在,并且它与包含$p^*2$的最小子表重合,其中2表示$\mathcal{S}$的子对象分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The least subtopos containing the discrete skeleton of $Ω$
Let $p: \mathcal{E} \to \mathcal{S}$ be a pre-cohesive geometric morphism. We show that the least subtopos of $\mathcal{E}$ containing both the subcategories $p^*: \mathcal{S} \to \mathcal{E}$ and $p^!: \mathcal{S} \to \mathcal{E}$ exists, and that it coincides with the least subtopos containing $p^*2$, where 2 denotes the subobject classifier of $\mathcal{S}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信