Zhengfeng Wang, Xiujuan Lei, Yuchen Zhang, Fang-Xiang Wu, Yi Pan
{"title":"用于 circRNA 上 RBP 结合位点预测的深度学习方法的最新进展","authors":"Zhengfeng Wang, Xiujuan Lei, Yuchen Zhang, Fang-Xiang Wu, Yi Pan","doi":"10.2174/0115748936308564240712053215","DOIUrl":null,"url":null,"abstract":"The interaction between circular RNA (circRNA) and RNA binding protein (RBP) plays an important biological role in the occurrence and development of various diseases. Highthroughput biological experimental methods such as CLIP-seq can effectively analyze the interaction between the two, but biological experiments are inefficient and expensive, and they can only capture binding sites of a specific RBP on circRNA in a selected cell environment at a time. These biological experiments still rely on downstream data analysis to understand the mechanisms behind many biological structures and physiological processes. However, the rapid growth of experimental data dimensions and production speed pose challenges to traditional analysis methods. In recent years, deep learning has made great progress in the genome and transcriptome, and some deep learning prediction algorithms for RBP binding sites on circRNA have also emerged. In this paper, we briefly introduce some biological background knowledge related to circRNA-RBP interaction; present relevant deep learning techniques in this field, including the problem formulation, data source, sequence encoding, deep learning model and overall process of RBP binding sites prediction on circRNA; deeply analyze the current deep learning methods. Finally, some problems existing in the current research and the direction of future research are discussed. It is hoped to help researchers without basic knowledge of deep learning or basic biological background quickly understand the RBP binding sites prediction on circRNA.","PeriodicalId":10801,"journal":{"name":"Current Bioinformatics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent Progress of Deep Learning Methods for RBP Binding Sites Prediction on circRNA\",\"authors\":\"Zhengfeng Wang, Xiujuan Lei, Yuchen Zhang, Fang-Xiang Wu, Yi Pan\",\"doi\":\"10.2174/0115748936308564240712053215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The interaction between circular RNA (circRNA) and RNA binding protein (RBP) plays an important biological role in the occurrence and development of various diseases. Highthroughput biological experimental methods such as CLIP-seq can effectively analyze the interaction between the two, but biological experiments are inefficient and expensive, and they can only capture binding sites of a specific RBP on circRNA in a selected cell environment at a time. These biological experiments still rely on downstream data analysis to understand the mechanisms behind many biological structures and physiological processes. However, the rapid growth of experimental data dimensions and production speed pose challenges to traditional analysis methods. In recent years, deep learning has made great progress in the genome and transcriptome, and some deep learning prediction algorithms for RBP binding sites on circRNA have also emerged. In this paper, we briefly introduce some biological background knowledge related to circRNA-RBP interaction; present relevant deep learning techniques in this field, including the problem formulation, data source, sequence encoding, deep learning model and overall process of RBP binding sites prediction on circRNA; deeply analyze the current deep learning methods. Finally, some problems existing in the current research and the direction of future research are discussed. It is hoped to help researchers without basic knowledge of deep learning or basic biological background quickly understand the RBP binding sites prediction on circRNA.\",\"PeriodicalId\":10801,\"journal\":{\"name\":\"Current Bioinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2174/0115748936308564240712053215\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0115748936308564240712053215","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Recent Progress of Deep Learning Methods for RBP Binding Sites Prediction on circRNA
The interaction between circular RNA (circRNA) and RNA binding protein (RBP) plays an important biological role in the occurrence and development of various diseases. Highthroughput biological experimental methods such as CLIP-seq can effectively analyze the interaction between the two, but biological experiments are inefficient and expensive, and they can only capture binding sites of a specific RBP on circRNA in a selected cell environment at a time. These biological experiments still rely on downstream data analysis to understand the mechanisms behind many biological structures and physiological processes. However, the rapid growth of experimental data dimensions and production speed pose challenges to traditional analysis methods. In recent years, deep learning has made great progress in the genome and transcriptome, and some deep learning prediction algorithms for RBP binding sites on circRNA have also emerged. In this paper, we briefly introduce some biological background knowledge related to circRNA-RBP interaction; present relevant deep learning techniques in this field, including the problem formulation, data source, sequence encoding, deep learning model and overall process of RBP binding sites prediction on circRNA; deeply analyze the current deep learning methods. Finally, some problems existing in the current research and the direction of future research are discussed. It is hoped to help researchers without basic knowledge of deep learning or basic biological background quickly understand the RBP binding sites prediction on circRNA.
期刊介绍:
Current Bioinformatics aims to publish all the latest and outstanding developments in bioinformatics. Each issue contains a series of timely, in-depth/mini-reviews, research papers and guest edited thematic issues written by leaders in the field, covering a wide range of the integration of biology with computer and information science.
The journal focuses on advances in computational molecular/structural biology, encompassing areas such as computing in biomedicine and genomics, computational proteomics and systems biology, and metabolic pathway engineering. Developments in these fields have direct implications on key issues related to health care, medicine, genetic disorders, development of agricultural products, renewable energy, environmental protection, etc.