来自 2 移位泊松结构的无限小 2-braidings

Cameron Kemp, Robert Laugwitz, Alexander Schenkel
{"title":"来自 2 移位泊松结构的无限小 2-braidings","authors":"Cameron Kemp, Robert Laugwitz, Alexander Schenkel","doi":"arxiv-2408.00391","DOIUrl":null,"url":null,"abstract":"It is shown that every $2$-shifted Poisson structure on a finitely generated\nsemi-free commutative differential graded algebra $A$ defines a very explicit\ninfinitesimal $2$-braiding on the homotopy $2$-category of the symmetric\nmonoidal dg-category of finitely generated semi-free $A$-dg-modules. This\nprovides a concrete realization, to first order in the deformation parameter\n$\\hbar$, of the abstract deformation quantization results in derived algebraic\ngeometry due to Calaque, Pantev, To\\\"en, Vaqui\\'e and Vezzosi. Of particular\ninterest is the case when $A$ is the Chevalley-Eilenberg algebra of a higher\nLie algebra, where the braided monoidal deformations developed in this paper\nmay be interpreted as candidates for representation categories of `higher\nquantum groups'.","PeriodicalId":501317,"journal":{"name":"arXiv - MATH - Quantum Algebra","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infinitesimal 2-braidings from 2-shifted Poisson structures\",\"authors\":\"Cameron Kemp, Robert Laugwitz, Alexander Schenkel\",\"doi\":\"arxiv-2408.00391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is shown that every $2$-shifted Poisson structure on a finitely generated\\nsemi-free commutative differential graded algebra $A$ defines a very explicit\\ninfinitesimal $2$-braiding on the homotopy $2$-category of the symmetric\\nmonoidal dg-category of finitely generated semi-free $A$-dg-modules. This\\nprovides a concrete realization, to first order in the deformation parameter\\n$\\\\hbar$, of the abstract deformation quantization results in derived algebraic\\ngeometry due to Calaque, Pantev, To\\\\\\\"en, Vaqui\\\\'e and Vezzosi. Of particular\\ninterest is the case when $A$ is the Chevalley-Eilenberg algebra of a higher\\nLie algebra, where the braided monoidal deformations developed in this paper\\nmay be interpreted as candidates for representation categories of `higher\\nquantum groups'.\",\"PeriodicalId\":501317,\"journal\":{\"name\":\"arXiv - MATH - Quantum Algebra\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Quantum Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.00391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Quantum Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.00391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究表明,在有限生成的半自由交换微分级数代数 $A$ 上的每一个 2$ 移位泊松结构,都在有限生成的半自由 $A$-dg 模块的对称单曲面 dg 类的同调 2$ 类上定义了一个非常明确的无限小 2$ 束缚。这为卡拉克、潘特夫、托恩、瓦奎(e)和韦佐西在派生代数几何中的抽象变形量子化结果提供了变形参数(hbar)一阶的具体实现。尤其有趣的是当 $A$ 是一个高等李代数的 Chevalley-Eilenberg 代数时的情况,在这种情况下,本文中发展的编织单环变形可以被解释为 "高等量子群 "的候选表示范畴。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Infinitesimal 2-braidings from 2-shifted Poisson structures
It is shown that every $2$-shifted Poisson structure on a finitely generated semi-free commutative differential graded algebra $A$ defines a very explicit infinitesimal $2$-braiding on the homotopy $2$-category of the symmetric monoidal dg-category of finitely generated semi-free $A$-dg-modules. This provides a concrete realization, to first order in the deformation parameter $\hbar$, of the abstract deformation quantization results in derived algebraic geometry due to Calaque, Pantev, To\"en, Vaqui\'e and Vezzosi. Of particular interest is the case when $A$ is the Chevalley-Eilenberg algebra of a higher Lie algebra, where the braided monoidal deformations developed in this paper may be interpreted as candidates for representation categories of `higher quantum groups'.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信