顶点代数和科斯特洛-威廉因式分解代数之间的函数代数构造

Yusuke Nishinaka
{"title":"顶点代数和科斯特洛-威廉因式分解代数之间的函数代数构造","authors":"Yusuke Nishinaka","doi":"arxiv-2408.00412","DOIUrl":null,"url":null,"abstract":"We construct functors between the category of vertex algebras and that of\nCostello-Gwilliam factorization algebras on the complex plane $\\mathbb{C}$,\nwithout analytic structures such as differentiable vector spaces, nuclear\nspaces, and bornological vector spaces. We prove that this pair of functors is\nan adjoint pair and that the functor from vertex algebras to factorization\nalgebras is fully faithful. Also, we identify the class of factorization\nalgebras that are categorically equivalent to vertex algebras. To illustrate,\nwe check the compatibility with the commutative structures and the\nfactorization algebras constructed as factorization envelopes, including the\nKac-Moody factorization algebra, the quantum observables of the $\\beta\\gamma$\nsystem, and the Virasoro factorization algebra.","PeriodicalId":501317,"journal":{"name":"arXiv - MATH - Quantum Algebra","volume":"56 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An algebraic construction of functors between vertex algebras and Costello-Gwilliam factorization algebras\",\"authors\":\"Yusuke Nishinaka\",\"doi\":\"arxiv-2408.00412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct functors between the category of vertex algebras and that of\\nCostello-Gwilliam factorization algebras on the complex plane $\\\\mathbb{C}$,\\nwithout analytic structures such as differentiable vector spaces, nuclear\\nspaces, and bornological vector spaces. We prove that this pair of functors is\\nan adjoint pair and that the functor from vertex algebras to factorization\\nalgebras is fully faithful. Also, we identify the class of factorization\\nalgebras that are categorically equivalent to vertex algebras. To illustrate,\\nwe check the compatibility with the commutative structures and the\\nfactorization algebras constructed as factorization envelopes, including the\\nKac-Moody factorization algebra, the quantum observables of the $\\\\beta\\\\gamma$\\nsystem, and the Virasoro factorization algebra.\",\"PeriodicalId\":501317,\"journal\":{\"name\":\"arXiv - MATH - Quantum Algebra\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Quantum Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.00412\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Quantum Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.00412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们构建了顶点代数范畴与复平面 $\mathbb{C}$ 上的科斯特洛-威廉因式分解代数范畴之间的函数,其中不包含可微分向量空间、核空间和生向量空间等分析结构。我们证明了这对函数是一对邻接函数,而且从顶点代数到因式分解代数的函数是完全忠实的。此外,我们还确定了一类在分类上等价于顶点代数的因式分解代数。为了说明这一点,我们检验了作为因式分解包络构造的交换结构和因式分解代数的兼容性,包括卡-莫迪因式分解代数、$\beta\gamma$系统的量子观测子和维拉索罗因式分解代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An algebraic construction of functors between vertex algebras and Costello-Gwilliam factorization algebras
We construct functors between the category of vertex algebras and that of Costello-Gwilliam factorization algebras on the complex plane $\mathbb{C}$, without analytic structures such as differentiable vector spaces, nuclear spaces, and bornological vector spaces. We prove that this pair of functors is an adjoint pair and that the functor from vertex algebras to factorization algebras is fully faithful. Also, we identify the class of factorization algebras that are categorically equivalent to vertex algebras. To illustrate, we check the compatibility with the commutative structures and the factorization algebras constructed as factorization envelopes, including the Kac-Moody factorization algebra, the quantum observables of the $\beta\gamma$ system, and the Virasoro factorization algebra.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信