{"title":"约束和线性约束无导数优化的全低评估方法","authors":"C. W. Royer, O. Sohab, L. N. Vicente","doi":"10.1007/s10589-024-00596-2","DOIUrl":null,"url":null,"abstract":"<p>Derivative-free optimization (DFO) consists in finding the best value of an objective function without relying on derivatives. To tackle such problems, one may build approximate derivatives, using for instance finite-difference estimates. One may also design algorithmic strategies that perform space exploration and seek improvement over the current point. The first type of strategy often provides good performance on smooth problems but at the expense of more function evaluations. The second type is cheaper and typically handles non-smoothness or noise in the objective better. Recently, full-low evaluation methods have been proposed as a hybrid class of DFO algorithms that combine both strategies, respectively denoted as Full-Eval and Low-Eval. In the unconstrained case, these methods showed promising numerical performance. In this paper, we extend the full-low evaluation framework to bound and linearly constrained derivative-free optimization. We derive convergence results for an instance of this framework, that combines finite-difference quasi-Newton steps with probabilistic direct-search steps. The former are projected onto the feasible set, while the latter are defined within tangent cones identified by nearby active constraints. We illustrate the practical performance of our instance on standard linearly constrained problems, that we adapt to introduce noisy evaluations as well as non-smoothness. In all cases, our method performs favorably compared to algorithms that rely solely on Full-eval or Low-eval iterations.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Full-low evaluation methods for bound and linearly constrained derivative-free optimization\",\"authors\":\"C. W. Royer, O. Sohab, L. N. Vicente\",\"doi\":\"10.1007/s10589-024-00596-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Derivative-free optimization (DFO) consists in finding the best value of an objective function without relying on derivatives. To tackle such problems, one may build approximate derivatives, using for instance finite-difference estimates. One may also design algorithmic strategies that perform space exploration and seek improvement over the current point. The first type of strategy often provides good performance on smooth problems but at the expense of more function evaluations. The second type is cheaper and typically handles non-smoothness or noise in the objective better. Recently, full-low evaluation methods have been proposed as a hybrid class of DFO algorithms that combine both strategies, respectively denoted as Full-Eval and Low-Eval. In the unconstrained case, these methods showed promising numerical performance. In this paper, we extend the full-low evaluation framework to bound and linearly constrained derivative-free optimization. We derive convergence results for an instance of this framework, that combines finite-difference quasi-Newton steps with probabilistic direct-search steps. The former are projected onto the feasible set, while the latter are defined within tangent cones identified by nearby active constraints. We illustrate the practical performance of our instance on standard linearly constrained problems, that we adapt to introduce noisy evaluations as well as non-smoothness. In all cases, our method performs favorably compared to algorithms that rely solely on Full-eval or Low-eval iterations.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10589-024-00596-2\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10589-024-00596-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Full-low evaluation methods for bound and linearly constrained derivative-free optimization
Derivative-free optimization (DFO) consists in finding the best value of an objective function without relying on derivatives. To tackle such problems, one may build approximate derivatives, using for instance finite-difference estimates. One may also design algorithmic strategies that perform space exploration and seek improvement over the current point. The first type of strategy often provides good performance on smooth problems but at the expense of more function evaluations. The second type is cheaper and typically handles non-smoothness or noise in the objective better. Recently, full-low evaluation methods have been proposed as a hybrid class of DFO algorithms that combine both strategies, respectively denoted as Full-Eval and Low-Eval. In the unconstrained case, these methods showed promising numerical performance. In this paper, we extend the full-low evaluation framework to bound and linearly constrained derivative-free optimization. We derive convergence results for an instance of this framework, that combines finite-difference quasi-Newton steps with probabilistic direct-search steps. The former are projected onto the feasible set, while the latter are defined within tangent cones identified by nearby active constraints. We illustrate the practical performance of our instance on standard linearly constrained problems, that we adapt to introduce noisy evaluations as well as non-smoothness. In all cases, our method performs favorably compared to algorithms that rely solely on Full-eval or Low-eval iterations.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.