Shaokang Liu, Bin Chao, Wenxin Fu, Kaixin Deng, Yan Li, Fangxin Zhang, Haihua Wu
{"title":"用于微波吸收的 PP/Ni-3D 印刷复合材料","authors":"Shaokang Liu, Bin Chao, Wenxin Fu, Kaixin Deng, Yan Li, Fangxin Zhang, Haihua Wu","doi":"10.1063/5.0208729","DOIUrl":null,"url":null,"abstract":"The increasing electromagnetic pollution due to the widespread use of electronic devices has drawn attention to the development of high-efficiency electromagnetic wave absorption materials. In this study, polypropylene (PP)/Ni composite materials were prepared using the fused deposition modeling method, with PP as the matrix. The mechanical and absorption properties were investigated, showing that the PP-based materials exhibited good mechanical performance with a tensile strength of 25.3 MPa and an elongation at break of 32.1%. At a Ni content of 50% and a thickness of 1.9 mm, the composite material showed absorption properties of −24.31 dB and 5.6 GHz. The absorption bandwidth covered the entire X and Ku bands (6.4–18 GHz) with adjustable thickness ranging from 1.5 to 4 mm. The combination of excellent absorption and mechanical properties makes these materials promising for the fabrication of complex absorber devices.","PeriodicalId":15088,"journal":{"name":"Journal of Applied Physics","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PP/Ni—3D printed composite materials for microwave absorption\",\"authors\":\"Shaokang Liu, Bin Chao, Wenxin Fu, Kaixin Deng, Yan Li, Fangxin Zhang, Haihua Wu\",\"doi\":\"10.1063/5.0208729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing electromagnetic pollution due to the widespread use of electronic devices has drawn attention to the development of high-efficiency electromagnetic wave absorption materials. In this study, polypropylene (PP)/Ni composite materials were prepared using the fused deposition modeling method, with PP as the matrix. The mechanical and absorption properties were investigated, showing that the PP-based materials exhibited good mechanical performance with a tensile strength of 25.3 MPa and an elongation at break of 32.1%. At a Ni content of 50% and a thickness of 1.9 mm, the composite material showed absorption properties of −24.31 dB and 5.6 GHz. The absorption bandwidth covered the entire X and Ku bands (6.4–18 GHz) with adjustable thickness ranging from 1.5 to 4 mm. The combination of excellent absorption and mechanical properties makes these materials promising for the fabrication of complex absorber devices.\",\"PeriodicalId\":15088,\"journal\":{\"name\":\"Journal of Applied Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0208729\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0208729","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
由于电子设备的广泛使用,电磁污染日益严重,因此开发高效电磁波吸收材料备受关注。本研究以聚丙烯(PP)为基体,采用熔融沉积模型法制备了聚丙烯(PP)/镍复合材料。研究表明,聚丙烯基材料具有良好的机械性能和吸收性能,拉伸强度为 25.3 兆帕,断裂伸长率为 32.1%。镍含量为 50%、厚度为 1.9 毫米时,复合材料的吸收特性为 -24.31 dB,频率为 5.6 GHz。吸收带宽覆盖整个 X 和 Ku 波段(6.4-18 GHz),厚度可调范围为 1.5 至 4 毫米。出色的吸收性能和机械性能使这些材料有望用于制造复杂的吸收器设备。
PP/Ni—3D printed composite materials for microwave absorption
The increasing electromagnetic pollution due to the widespread use of electronic devices has drawn attention to the development of high-efficiency electromagnetic wave absorption materials. In this study, polypropylene (PP)/Ni composite materials were prepared using the fused deposition modeling method, with PP as the matrix. The mechanical and absorption properties were investigated, showing that the PP-based materials exhibited good mechanical performance with a tensile strength of 25.3 MPa and an elongation at break of 32.1%. At a Ni content of 50% and a thickness of 1.9 mm, the composite material showed absorption properties of −24.31 dB and 5.6 GHz. The absorption bandwidth covered the entire X and Ku bands (6.4–18 GHz) with adjustable thickness ranging from 1.5 to 4 mm. The combination of excellent absorption and mechanical properties makes these materials promising for the fabrication of complex absorber devices.
期刊介绍:
The Journal of Applied Physics (JAP) is an influential international journal publishing significant new experimental and theoretical results of applied physics research.
Topics covered in JAP are diverse and reflect the most current applied physics research, including:
Dielectrics, ferroelectrics, and multiferroics-
Electrical discharges, plasmas, and plasma-surface interactions-
Emerging, interdisciplinary, and other fields of applied physics-
Magnetism, spintronics, and superconductivity-
Organic-Inorganic systems, including organic electronics-
Photonics, plasmonics, photovoltaics, lasers, optical materials, and phenomena-
Physics of devices and sensors-
Physics of materials, including electrical, thermal, mechanical and other properties-
Physics of matter under extreme conditions-
Physics of nanoscale and low-dimensional systems, including atomic and quantum phenomena-
Physics of semiconductors-
Soft matter, fluids, and biophysics-
Thin films, interfaces, and surfaces