分数中值及其最大函数

Yohei Tsutsui
{"title":"分数中值及其最大函数","authors":"Yohei Tsutsui","doi":"10.1007/s12220-024-01750-2","DOIUrl":null,"url":null,"abstract":"<p>In this article, we introduce the fractional medians, provide a representation for the set of all fractional medians in terms of non-increasing rearrangements, and investigate the mapping properties of the fractional maximal operators defined by these medians. Our maximal operator is a generalization of the one introduced by Strömberg (Indiana Univ Math J 28(3):511–544, 1979). It turns out that our maximal operator is smoother than the usual fractional maximal operator. Furthermore, we provide an alternative proof of the embedding from <i>BV</i> to <span>\\(L^{n/(n-1),1}\\)</span> due to Alvino (Boll Un Mat Ital A 14(1):148–156, 1977) by using the usual medians.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractional Medians and Their Maximal Functions\",\"authors\":\"Yohei Tsutsui\",\"doi\":\"10.1007/s12220-024-01750-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, we introduce the fractional medians, provide a representation for the set of all fractional medians in terms of non-increasing rearrangements, and investigate the mapping properties of the fractional maximal operators defined by these medians. Our maximal operator is a generalization of the one introduced by Strömberg (Indiana Univ Math J 28(3):511–544, 1979). It turns out that our maximal operator is smoother than the usual fractional maximal operator. Furthermore, we provide an alternative proof of the embedding from <i>BV</i> to <span>\\\\(L^{n/(n-1),1}\\\\)</span> due to Alvino (Boll Un Mat Ital A 14(1):148–156, 1977) by using the usual medians.</p>\",\"PeriodicalId\":501200,\"journal\":{\"name\":\"The Journal of Geometric Analysis\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Geometric Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-024-01750-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01750-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们介绍了分数中值,用非递增重排为所有分数中值的集合提供了一种表示方法,并研究了由这些中值定义的分数最大算子的映射性质。我们的最大算子是对 Strömberg 引入的算子(Indiana Univ Math J 28(3):511-544, 1979)的概括。事实证明,我们的最大算子比通常的分数最大算子更平滑。此外,我们通过使用通常的中值,为阿尔维诺(Boll Un Mat Ital A 14(1):148-156, 1977)提出的从 BV 到 \(L^{n/(n-1),1}\)的嵌入提供了另一种证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fractional Medians and Their Maximal Functions

In this article, we introduce the fractional medians, provide a representation for the set of all fractional medians in terms of non-increasing rearrangements, and investigate the mapping properties of the fractional maximal operators defined by these medians. Our maximal operator is a generalization of the one introduced by Strömberg (Indiana Univ Math J 28(3):511–544, 1979). It turns out that our maximal operator is smoother than the usual fractional maximal operator. Furthermore, we provide an alternative proof of the embedding from BV to \(L^{n/(n-1),1}\) due to Alvino (Boll Un Mat Ital A 14(1):148–156, 1977) by using the usual medians.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信