{"title":"三维-一维系统的非连续伽勒金方法","authors":"Rami Masri, Miroslav Kuchta, Beatrice Riviere","doi":"10.1137/23m1627390","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 62, Issue 4, Page 1814-1843, August 2024. <br/> Abstract. We propose and analyze discontinuous Galerkin (dG) approximations to 3D−1D coupled systems which model diffusion in a 3D domain containing a small inclusion reduced to its 1D centerline. Convergence to weak solutions of a steady state problem is established via deriving a posteriori error estimates and bounds on residuals defined with suitable lift operators. For the time-dependent problem, a backward Euler dG formulation is also presented and analyzed. Further, we propose a dG method for networks embedded in 3D domains, which is, up to jump terms, locally mass conservative on bifurcation points. Numerical examples in idealized geometries portray our theoretical findings, and simulations in realistic 1D networks show the robustness of our method.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"21 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discontinuous Galerkin Methods for 3D–1D Systems\",\"authors\":\"Rami Masri, Miroslav Kuchta, Beatrice Riviere\",\"doi\":\"10.1137/23m1627390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Numerical Analysis, Volume 62, Issue 4, Page 1814-1843, August 2024. <br/> Abstract. We propose and analyze discontinuous Galerkin (dG) approximations to 3D−1D coupled systems which model diffusion in a 3D domain containing a small inclusion reduced to its 1D centerline. Convergence to weak solutions of a steady state problem is established via deriving a posteriori error estimates and bounds on residuals defined with suitable lift operators. For the time-dependent problem, a backward Euler dG formulation is also presented and analyzed. Further, we propose a dG method for networks embedded in 3D domains, which is, up to jump terms, locally mass conservative on bifurcation points. Numerical examples in idealized geometries portray our theoretical findings, and simulations in realistic 1D networks show the robustness of our method.\",\"PeriodicalId\":49527,\"journal\":{\"name\":\"SIAM Journal on Numerical Analysis\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1627390\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1627390","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
SIAM Journal on Numerical Analysis, Volume 62, Issue 4, Page 1814-1843, August 2024. Abstract. We propose and analyze discontinuous Galerkin (dG) approximations to 3D−1D coupled systems which model diffusion in a 3D domain containing a small inclusion reduced to its 1D centerline. Convergence to weak solutions of a steady state problem is established via deriving a posteriori error estimates and bounds on residuals defined with suitable lift operators. For the time-dependent problem, a backward Euler dG formulation is also presented and analyzed. Further, we propose a dG method for networks embedded in 3D domains, which is, up to jump terms, locally mass conservative on bifurcation points. Numerical examples in idealized geometries portray our theoretical findings, and simulations in realistic 1D networks show the robustness of our method.
期刊介绍:
SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.