从土壤到序列:填补基因组解析元基因组学的关键空白对土壤微生物生态学的未来至关重要。

IF 6.2 2区 环境科学与生态学 Q1 GENETICS & HEREDITY
Winston E Anthony, Steven D Allison, Caitlin M Broderick, Luciana Chavez Rodriguez, Alicia Clum, Hugh Cross, Emiley Eloe-Fadrosh, Sarah Evans, Dawson Fairbanks, Rachel Gallery, Júlia Brandão Gontijo, Jennifer Jones, Jason McDermott, Jennifer Pett-Ridge, Sydne Record, Jorge Luiz Mazza Rodrigues, William Rodriguez-Reillo, Katherine L Shek, Tina Takacs-Vesbach, Jeffrey L Blanchard
{"title":"从土壤到序列:填补基因组解析元基因组学的关键空白对土壤微生物生态学的未来至关重要。","authors":"Winston E Anthony, Steven D Allison, Caitlin M Broderick, Luciana Chavez Rodriguez, Alicia Clum, Hugh Cross, Emiley Eloe-Fadrosh, Sarah Evans, Dawson Fairbanks, Rachel Gallery, Júlia Brandão Gontijo, Jennifer Jones, Jason McDermott, Jennifer Pett-Ridge, Sydne Record, Jorge Luiz Mazza Rodrigues, William Rodriguez-Reillo, Katherine L Shek, Tina Takacs-Vesbach, Jeffrey L Blanchard","doi":"10.1186/s40793-024-00599-w","DOIUrl":null,"url":null,"abstract":"<p><p>Soil microbiomes are heterogeneous, complex microbial communities. Metagenomic analysis is generating vast amounts of data, creating immense challenges in sequence assembly and analysis. Although advances in technology have resulted in the ability to easily collect large amounts of sequence data, soil samples containing thousands of unique taxa are often poorly characterized. These challenges reduce the usefulness of genome-resolved metagenomic (GRM) analysis seen in other fields of microbiology, such as the creation of high quality metagenomic assembled genomes and the adoption of genome scale modeling approaches. The absence of these resources restricts the scale of future research, limiting hypothesis generation and the predictive modeling of microbial communities. Creating publicly available databases of soil MAGs, similar to databases produced for other microbiomes, has the potential to transform scientific insights about soil microbiomes without requiring the computational resources and domain expertise for assembly and binning.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"56"},"PeriodicalIF":6.2000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11295382/pdf/","citationCount":"0","resultStr":"{\"title\":\"From soil to sequence: filling the critical gap in genome-resolved metagenomics is essential to the future of soil microbial ecology.\",\"authors\":\"Winston E Anthony, Steven D Allison, Caitlin M Broderick, Luciana Chavez Rodriguez, Alicia Clum, Hugh Cross, Emiley Eloe-Fadrosh, Sarah Evans, Dawson Fairbanks, Rachel Gallery, Júlia Brandão Gontijo, Jennifer Jones, Jason McDermott, Jennifer Pett-Ridge, Sydne Record, Jorge Luiz Mazza Rodrigues, William Rodriguez-Reillo, Katherine L Shek, Tina Takacs-Vesbach, Jeffrey L Blanchard\",\"doi\":\"10.1186/s40793-024-00599-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Soil microbiomes are heterogeneous, complex microbial communities. Metagenomic analysis is generating vast amounts of data, creating immense challenges in sequence assembly and analysis. Although advances in technology have resulted in the ability to easily collect large amounts of sequence data, soil samples containing thousands of unique taxa are often poorly characterized. These challenges reduce the usefulness of genome-resolved metagenomic (GRM) analysis seen in other fields of microbiology, such as the creation of high quality metagenomic assembled genomes and the adoption of genome scale modeling approaches. The absence of these resources restricts the scale of future research, limiting hypothesis generation and the predictive modeling of microbial communities. Creating publicly available databases of soil MAGs, similar to databases produced for other microbiomes, has the potential to transform scientific insights about soil microbiomes without requiring the computational resources and domain expertise for assembly and binning.</p>\",\"PeriodicalId\":48553,\"journal\":{\"name\":\"Environmental Microbiome\",\"volume\":\"19 1\",\"pages\":\"56\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11295382/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Microbiome\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1186/s40793-024-00599-w\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Microbiome","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1186/s40793-024-00599-w","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

土壤微生物组是一个异质性的复杂微生物群落。元基因组分析产生了大量数据,给序列组装和分析带来了巨大挑战。虽然技术的进步使人们能够轻松收集大量序列数据,但包含数千个独特类群的土壤样本往往特征不清。这些挑战降低了基因组分辨元基因组(GRM)分析在微生物学其他领域的实用性,如创建高质量的元基因组组装基因组和采用基因组规模建模方法。这些资源的缺乏限制了未来研究的规模,限制了假设的产生和微生物群落的预测建模。建立公开可用的土壤 MAGs 数据库,类似于为其他微生物组建立的数据库,有可能改变对土壤微生物组的科学认识,而不需要组装和分选所需的计算资源和领域专业知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From soil to sequence: filling the critical gap in genome-resolved metagenomics is essential to the future of soil microbial ecology.

Soil microbiomes are heterogeneous, complex microbial communities. Metagenomic analysis is generating vast amounts of data, creating immense challenges in sequence assembly and analysis. Although advances in technology have resulted in the ability to easily collect large amounts of sequence data, soil samples containing thousands of unique taxa are often poorly characterized. These challenges reduce the usefulness of genome-resolved metagenomic (GRM) analysis seen in other fields of microbiology, such as the creation of high quality metagenomic assembled genomes and the adoption of genome scale modeling approaches. The absence of these resources restricts the scale of future research, limiting hypothesis generation and the predictive modeling of microbial communities. Creating publicly available databases of soil MAGs, similar to databases produced for other microbiomes, has the potential to transform scientific insights about soil microbiomes without requiring the computational resources and domain expertise for assembly and binning.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Microbiome
Environmental Microbiome Immunology and Microbiology-Microbiology
CiteScore
7.40
自引率
2.50%
发文量
55
审稿时长
13 weeks
期刊介绍: Microorganisms, omnipresent across Earth's diverse environments, play a crucial role in adapting to external changes, influencing Earth's systems and cycles, and contributing significantly to agricultural practices. Through applied microbiology, they offer solutions to various everyday needs. Environmental Microbiome recognizes the universal presence and significance of microorganisms, inviting submissions that explore the diverse facets of environmental and applied microbiological research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信