{"title":"介孔二氧化硅中的坎地沙坦西来替酯制剂:制备、增强体外溶解度和体内口服生物利用度。","authors":"","doi":"10.1016/j.xphs.2024.07.007","DOIUrl":null,"url":null,"abstract":"<div><div>Candesartan cilexetil (CC) is one of well-tolerated antihypertensive drugs, while its poor solubility and low bioavailability limit its use. Herein, two mesoporous silica (Syloid XDP 3150 and Syloid AL-1 FP) and the corresponding amino-modified products (N-XDP 3150 and N-AL-1 FP) have been selected as the carriers of Candesartan cilexetil to prepare solid dispersion through solvent immersion, and characterized through using powder X-ray diffraction analysis, infrared spectroscopy, differential scanning calorimetry, scanning electron microscopy, and solid-state nuclear magnetic resonance spectroscopy, etc. The state of CC changed from crystalline to amorphous after loading onto the silica carriers, in which no interactions between CC and silica existed. Then, the dissolution behaviors <em>in vitro</em> were studied through using flow-through cell dissolution method. CC-XDP 3150 sample exhibited the most extensive dissolution, and the cumulative release of CC from it was 1.88-fold larger than that of CC. Moreover, the pharmacokinetic results in rats revealed that the relative bioavailability of CC-XDP 3150 and CC-N-XDP 3150 solid dispersions were estimated to be 326 % % and 238 % % in comparison with CC, respectively. Clearly, pore size, pore volume, and surface properties of silica carrier have remarkable effect on loading, dissolution and bioavailability of CC. In brief, this work will provide valuable information in construction of mesoporous silica-based delivery system toward poorly water-soluble drugs.</div></div>","PeriodicalId":16741,"journal":{"name":"Journal of pharmaceutical sciences","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Candesartan Cilexetil Formulations in Mesoporous Silica: Preparation, Enhanced Dissolution In Vitro, and Oral Bioavailability In Vivo\",\"authors\":\"\",\"doi\":\"10.1016/j.xphs.2024.07.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Candesartan cilexetil (CC) is one of well-tolerated antihypertensive drugs, while its poor solubility and low bioavailability limit its use. Herein, two mesoporous silica (Syloid XDP 3150 and Syloid AL-1 FP) and the corresponding amino-modified products (N-XDP 3150 and N-AL-1 FP) have been selected as the carriers of Candesartan cilexetil to prepare solid dispersion through solvent immersion, and characterized through using powder X-ray diffraction analysis, infrared spectroscopy, differential scanning calorimetry, scanning electron microscopy, and solid-state nuclear magnetic resonance spectroscopy, etc. The state of CC changed from crystalline to amorphous after loading onto the silica carriers, in which no interactions between CC and silica existed. Then, the dissolution behaviors <em>in vitro</em> were studied through using flow-through cell dissolution method. CC-XDP 3150 sample exhibited the most extensive dissolution, and the cumulative release of CC from it was 1.88-fold larger than that of CC. Moreover, the pharmacokinetic results in rats revealed that the relative bioavailability of CC-XDP 3150 and CC-N-XDP 3150 solid dispersions were estimated to be 326 % % and 238 % % in comparison with CC, respectively. Clearly, pore size, pore volume, and surface properties of silica carrier have remarkable effect on loading, dissolution and bioavailability of CC. In brief, this work will provide valuable information in construction of mesoporous silica-based delivery system toward poorly water-soluble drugs.</div></div>\",\"PeriodicalId\":16741,\"journal\":{\"name\":\"Journal of pharmaceutical sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of pharmaceutical sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022354924002533\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022354924002533","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Candesartan Cilexetil Formulations in Mesoporous Silica: Preparation, Enhanced Dissolution In Vitro, and Oral Bioavailability In Vivo
Candesartan cilexetil (CC) is one of well-tolerated antihypertensive drugs, while its poor solubility and low bioavailability limit its use. Herein, two mesoporous silica (Syloid XDP 3150 and Syloid AL-1 FP) and the corresponding amino-modified products (N-XDP 3150 and N-AL-1 FP) have been selected as the carriers of Candesartan cilexetil to prepare solid dispersion through solvent immersion, and characterized through using powder X-ray diffraction analysis, infrared spectroscopy, differential scanning calorimetry, scanning electron microscopy, and solid-state nuclear magnetic resonance spectroscopy, etc. The state of CC changed from crystalline to amorphous after loading onto the silica carriers, in which no interactions between CC and silica existed. Then, the dissolution behaviors in vitro were studied through using flow-through cell dissolution method. CC-XDP 3150 sample exhibited the most extensive dissolution, and the cumulative release of CC from it was 1.88-fold larger than that of CC. Moreover, the pharmacokinetic results in rats revealed that the relative bioavailability of CC-XDP 3150 and CC-N-XDP 3150 solid dispersions were estimated to be 326 % % and 238 % % in comparison with CC, respectively. Clearly, pore size, pore volume, and surface properties of silica carrier have remarkable effect on loading, dissolution and bioavailability of CC. In brief, this work will provide valuable information in construction of mesoporous silica-based delivery system toward poorly water-soluble drugs.
期刊介绍:
The Journal of Pharmaceutical Sciences will publish original research papers, original research notes, invited topical reviews (including Minireviews), and editorial commentary and news. The area of focus shall be concepts in basic pharmaceutical science and such topics as chemical processing of pharmaceuticals, including crystallization, lyophilization, chemical stability of drugs, pharmacokinetics, biopharmaceutics, pharmacodynamics, pro-drug developments, metabolic disposition of bioactive agents, dosage form design, protein-peptide chemistry and biotechnology specifically as these relate to pharmaceutical technology, and targeted drug delivery.