Yang Tan, Mingchen Li, Ziyi Zhou, Pan Tan, Huiqun Yu, Guisheng Fan, Liang Hong
{"title":"PETA:评估蛋白质转移学习与子词标记化对下游应用的影响","authors":"Yang Tan, Mingchen Li, Ziyi Zhou, Pan Tan, Huiqun Yu, Guisheng Fan, Liang Hong","doi":"10.1186/s13321-024-00884-3","DOIUrl":null,"url":null,"abstract":"<p>Protein language models (PLMs) play a dominant role in protein representation learning. Most existing PLMs regard proteins as sequences of 20 natural amino acids. The problem with this representation method is that it simply divides the protein sequence into sequences of individual amino acids, ignoring the fact that certain residues often occur together. Therefore, it is inappropriate to view amino acids as isolated tokens. Instead, the PLMs should recognize the frequently occurring combinations of amino acids as a single token. In this study, we use the byte-pair-encoding algorithm and unigram to construct advanced residue vocabularies for protein sequence tokenization, and we have shown that PLMs pre-trained using these advanced vocabularies exhibit superior performance on downstream tasks when compared to those trained with simple vocabularies. Furthermore, we introduce PETA, a comprehensive benchmark for systematically evaluating PLMs. We find that vocabularies comprising 50 and 200 elements achieve optimal performance. Our code, model weights, and datasets are available at https://github.com/ginnm/ProteinPretraining. </p>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00884-3","citationCount":"0","resultStr":"{\"title\":\"PETA: evaluating the impact of protein transfer learning with sub-word tokenization on downstream applications\",\"authors\":\"Yang Tan, Mingchen Li, Ziyi Zhou, Pan Tan, Huiqun Yu, Guisheng Fan, Liang Hong\",\"doi\":\"10.1186/s13321-024-00884-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Protein language models (PLMs) play a dominant role in protein representation learning. Most existing PLMs regard proteins as sequences of 20 natural amino acids. The problem with this representation method is that it simply divides the protein sequence into sequences of individual amino acids, ignoring the fact that certain residues often occur together. Therefore, it is inappropriate to view amino acids as isolated tokens. Instead, the PLMs should recognize the frequently occurring combinations of amino acids as a single token. In this study, we use the byte-pair-encoding algorithm and unigram to construct advanced residue vocabularies for protein sequence tokenization, and we have shown that PLMs pre-trained using these advanced vocabularies exhibit superior performance on downstream tasks when compared to those trained with simple vocabularies. Furthermore, we introduce PETA, a comprehensive benchmark for systematically evaluating PLMs. We find that vocabularies comprising 50 and 200 elements achieve optimal performance. Our code, model weights, and datasets are available at https://github.com/ginnm/ProteinPretraining. </p>\",\"PeriodicalId\":617,\"journal\":{\"name\":\"Journal of Cheminformatics\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00884-3\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cheminformatics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13321-024-00884-3\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-024-00884-3","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
PETA: evaluating the impact of protein transfer learning with sub-word tokenization on downstream applications
Protein language models (PLMs) play a dominant role in protein representation learning. Most existing PLMs regard proteins as sequences of 20 natural amino acids. The problem with this representation method is that it simply divides the protein sequence into sequences of individual amino acids, ignoring the fact that certain residues often occur together. Therefore, it is inappropriate to view amino acids as isolated tokens. Instead, the PLMs should recognize the frequently occurring combinations of amino acids as a single token. In this study, we use the byte-pair-encoding algorithm and unigram to construct advanced residue vocabularies for protein sequence tokenization, and we have shown that PLMs pre-trained using these advanced vocabularies exhibit superior performance on downstream tasks when compared to those trained with simple vocabularies. Furthermore, we introduce PETA, a comprehensive benchmark for systematically evaluating PLMs. We find that vocabularies comprising 50 and 200 elements achieve optimal performance. Our code, model weights, and datasets are available at https://github.com/ginnm/ProteinPretraining.
期刊介绍:
Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling.
Coverage includes, but is not limited to:
chemical information systems, software and databases, and molecular modelling,
chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases,
computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.