Xiaoqian Chen, Richard L. J. Qiu, Junbo Peng, Joseph W. Shelton, Chih-Wei Chang, Xiaofeng Yang, Aparna H. Kesarwala
{"title":"利用扩散模型生成基于 CBCT 的合成 CT 图像,用于 CBCT 引导的肺部放疗。","authors":"Xiaoqian Chen, Richard L. J. Qiu, Junbo Peng, Joseph W. Shelton, Chih-Wei Chang, Xiaofeng Yang, Aparna H. Kesarwala","doi":"10.1002/mp.17328","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Although cone beam computed tomography (CBCT) has lower resolution compared to planning CTs (pCT), its lower dose, higher high-contrast resolution, and shorter scanning time support its widespread use in clinical applications, especially in ensuring accurate patient positioning during the image-guided radiation therapy (IGRT) process.</p>\n </section>\n \n <section>\n \n <h3> Purpose</h3>\n \n <p>While CBCT is critical to IGRT, CBCT image quality can be compromised by severe stripe and scattering artifacts. Tumor movement secondary to respiratory motion also decreases CBCT resolution. In order to improve the image quality of CBCT, we propose a Lung Diffusion Model (L-DM) framework.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Our proposed algorithm is based on a conditional diffusion model trained on pCT and deformed CBCT (dCBCT) image pairs to synthesize lung CT images from dCBCT images and benefit CBCT-based radiotherapy. dCBCT images were used as the constraint for the L-DM. The image quality and Hounsfield unit (HU) values of the synthetic CTs (sCT) images generated by the proposed L-DM were compared to three selected mainstream generation models.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>We verified our model in both an institutional lung cancer dataset and a selected public dataset. Our L-DM showed significant improvement in the four metrics of mean absolute error (MAE), peak signal-to-noise ratio (PSNR), normalized cross-correlation (NCC), and structural similarity index measure (SSIM). In our institutional dataset, our proposed L-DM decreased the MAE from 101.47 to 37.87 HU and increased the PSNR from 24.97 to 29.89 dB, the NCC from 0.81 to 0.97, and the SSIM from 0.80 to 0.93. In the public dataset, our proposed L-DM decreased the MAE from 173.65 to 58.95 HU, while increasing the PSNR, NCC, and SSIM from 13.07 to 24.05 dB, 0.68 to 0.94, and 0.41 to 0.88, respectively.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>The proposed L-DM significantly improved sCT image quality compared to the pre-correction CBCT and three mainstream generative models. Our model can benefit CBCT-based IGRT and other potential clinical applications as it increases the HU accuracy and decreases the artifacts from input CBCT images.</p>\n </section>\n </div>","PeriodicalId":18384,"journal":{"name":"Medical physics","volume":"51 11","pages":"8168-8178"},"PeriodicalIF":3.2000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CBCT-based synthetic CT image generation using a diffusion model for CBCT-guided lung radiotherapy\",\"authors\":\"Xiaoqian Chen, Richard L. J. Qiu, Junbo Peng, Joseph W. Shelton, Chih-Wei Chang, Xiaofeng Yang, Aparna H. Kesarwala\",\"doi\":\"10.1002/mp.17328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background</h3>\\n \\n <p>Although cone beam computed tomography (CBCT) has lower resolution compared to planning CTs (pCT), its lower dose, higher high-contrast resolution, and shorter scanning time support its widespread use in clinical applications, especially in ensuring accurate patient positioning during the image-guided radiation therapy (IGRT) process.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Purpose</h3>\\n \\n <p>While CBCT is critical to IGRT, CBCT image quality can be compromised by severe stripe and scattering artifacts. Tumor movement secondary to respiratory motion also decreases CBCT resolution. In order to improve the image quality of CBCT, we propose a Lung Diffusion Model (L-DM) framework.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>Our proposed algorithm is based on a conditional diffusion model trained on pCT and deformed CBCT (dCBCT) image pairs to synthesize lung CT images from dCBCT images and benefit CBCT-based radiotherapy. dCBCT images were used as the constraint for the L-DM. The image quality and Hounsfield unit (HU) values of the synthetic CTs (sCT) images generated by the proposed L-DM were compared to three selected mainstream generation models.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>We verified our model in both an institutional lung cancer dataset and a selected public dataset. Our L-DM showed significant improvement in the four metrics of mean absolute error (MAE), peak signal-to-noise ratio (PSNR), normalized cross-correlation (NCC), and structural similarity index measure (SSIM). In our institutional dataset, our proposed L-DM decreased the MAE from 101.47 to 37.87 HU and increased the PSNR from 24.97 to 29.89 dB, the NCC from 0.81 to 0.97, and the SSIM from 0.80 to 0.93. In the public dataset, our proposed L-DM decreased the MAE from 173.65 to 58.95 HU, while increasing the PSNR, NCC, and SSIM from 13.07 to 24.05 dB, 0.68 to 0.94, and 0.41 to 0.88, respectively.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>The proposed L-DM significantly improved sCT image quality compared to the pre-correction CBCT and three mainstream generative models. Our model can benefit CBCT-based IGRT and other potential clinical applications as it increases the HU accuracy and decreases the artifacts from input CBCT images.</p>\\n </section>\\n </div>\",\"PeriodicalId\":18384,\"journal\":{\"name\":\"Medical physics\",\"volume\":\"51 11\",\"pages\":\"8168-8178\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical physics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mp.17328\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical physics","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mp.17328","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
CBCT-based synthetic CT image generation using a diffusion model for CBCT-guided lung radiotherapy
Background
Although cone beam computed tomography (CBCT) has lower resolution compared to planning CTs (pCT), its lower dose, higher high-contrast resolution, and shorter scanning time support its widespread use in clinical applications, especially in ensuring accurate patient positioning during the image-guided radiation therapy (IGRT) process.
Purpose
While CBCT is critical to IGRT, CBCT image quality can be compromised by severe stripe and scattering artifacts. Tumor movement secondary to respiratory motion also decreases CBCT resolution. In order to improve the image quality of CBCT, we propose a Lung Diffusion Model (L-DM) framework.
Methods
Our proposed algorithm is based on a conditional diffusion model trained on pCT and deformed CBCT (dCBCT) image pairs to synthesize lung CT images from dCBCT images and benefit CBCT-based radiotherapy. dCBCT images were used as the constraint for the L-DM. The image quality and Hounsfield unit (HU) values of the synthetic CTs (sCT) images generated by the proposed L-DM were compared to three selected mainstream generation models.
Results
We verified our model in both an institutional lung cancer dataset and a selected public dataset. Our L-DM showed significant improvement in the four metrics of mean absolute error (MAE), peak signal-to-noise ratio (PSNR), normalized cross-correlation (NCC), and structural similarity index measure (SSIM). In our institutional dataset, our proposed L-DM decreased the MAE from 101.47 to 37.87 HU and increased the PSNR from 24.97 to 29.89 dB, the NCC from 0.81 to 0.97, and the SSIM from 0.80 to 0.93. In the public dataset, our proposed L-DM decreased the MAE from 173.65 to 58.95 HU, while increasing the PSNR, NCC, and SSIM from 13.07 to 24.05 dB, 0.68 to 0.94, and 0.41 to 0.88, respectively.
Conclusions
The proposed L-DM significantly improved sCT image quality compared to the pre-correction CBCT and three mainstream generative models. Our model can benefit CBCT-based IGRT and other potential clinical applications as it increases the HU accuracy and decreases the artifacts from input CBCT images.
期刊介绍:
Medical Physics publishes original, high impact physics, imaging science, and engineering research that advances patient diagnosis and therapy through contributions in 1) Basic science developments with high potential for clinical translation 2) Clinical applications of cutting edge engineering and physics innovations 3) Broadly applicable and innovative clinical physics developments
Medical Physics is a journal of global scope and reach. By publishing in Medical Physics your research will reach an international, multidisciplinary audience including practicing medical physicists as well as physics- and engineering based translational scientists. We work closely with authors of promising articles to improve their quality.