Selene De Sutter, Joris Wuts, Wietse Geens, Anne-Marie Vanbinst, Johnny Duerinck, Jef Vandemeulebroucke
{"title":"基于磁共振成像的胶质母细胞瘤分割的模式冗余。","authors":"Selene De Sutter, Joris Wuts, Wietse Geens, Anne-Marie Vanbinst, Johnny Duerinck, Jef Vandemeulebroucke","doi":"10.1007/s11548-024-03238-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Automated glioblastoma segmentation from magnetic resonance imaging is generally performed on a four-modality input, including T1, contrast T1, T2 and FLAIR. We hypothesize that information redundancy is present within these image combinations, which can possibly reduce a model's performance. Moreover, for clinical applications, the risk of encountering missing data rises as the number of required input modalities increases. Therefore, this study aimed to explore the relevance and influence of the different modalities used for MRI-based glioblastoma segmentation.</p><p><strong>Methods: </strong>After the training of multiple segmentation models based on nnU-Net and SwinUNETR architectures, differing only in their amount and combinations of input modalities, each model was evaluated with regard to segmentation accuracy and epistemic uncertainty.</p><p><strong>Results: </strong>Results show that T1CE-based segmentation (for enhanced tumor and tumor core) and T1CE-FLAIR-based segmentation (for whole tumor and overall segmentation) can reach segmentation accuracies comparable to the full-input version. Notably, the highest segmentation accuracy for nnU-Net was found for a three-input configuration of T1CE-FLAIR-T1, suggesting the confounding effect of redundant input modalities. The SwinUNETR architecture appears to suffer less from this, where said three-input and the full-input model yielded statistically equal results.</p><p><strong>Conclusion: </strong>The T1CE-FLAIR-based model can therefore be considered as a minimal-input alternative to the full-input configuration. Addition of modalities beyond this does not statistically improve and can even deteriorate accuracy, but does lower the segmentation uncertainty.</p>","PeriodicalId":51251,"journal":{"name":"International Journal of Computer Assisted Radiology and Surgery","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11442599/pdf/","citationCount":"0","resultStr":"{\"title\":\"Modality redundancy for MRI-based glioblastoma segmentation.\",\"authors\":\"Selene De Sutter, Joris Wuts, Wietse Geens, Anne-Marie Vanbinst, Johnny Duerinck, Jef Vandemeulebroucke\",\"doi\":\"10.1007/s11548-024-03238-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Automated glioblastoma segmentation from magnetic resonance imaging is generally performed on a four-modality input, including T1, contrast T1, T2 and FLAIR. We hypothesize that information redundancy is present within these image combinations, which can possibly reduce a model's performance. Moreover, for clinical applications, the risk of encountering missing data rises as the number of required input modalities increases. Therefore, this study aimed to explore the relevance and influence of the different modalities used for MRI-based glioblastoma segmentation.</p><p><strong>Methods: </strong>After the training of multiple segmentation models based on nnU-Net and SwinUNETR architectures, differing only in their amount and combinations of input modalities, each model was evaluated with regard to segmentation accuracy and epistemic uncertainty.</p><p><strong>Results: </strong>Results show that T1CE-based segmentation (for enhanced tumor and tumor core) and T1CE-FLAIR-based segmentation (for whole tumor and overall segmentation) can reach segmentation accuracies comparable to the full-input version. Notably, the highest segmentation accuracy for nnU-Net was found for a three-input configuration of T1CE-FLAIR-T1, suggesting the confounding effect of redundant input modalities. The SwinUNETR architecture appears to suffer less from this, where said three-input and the full-input model yielded statistically equal results.</p><p><strong>Conclusion: </strong>The T1CE-FLAIR-based model can therefore be considered as a minimal-input alternative to the full-input configuration. Addition of modalities beyond this does not statistically improve and can even deteriorate accuracy, but does lower the segmentation uncertainty.</p>\",\"PeriodicalId\":51251,\"journal\":{\"name\":\"International Journal of Computer Assisted Radiology and Surgery\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11442599/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Assisted Radiology and Surgery\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11548-024-03238-4\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Assisted Radiology and Surgery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11548-024-03238-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Modality redundancy for MRI-based glioblastoma segmentation.
Purpose: Automated glioblastoma segmentation from magnetic resonance imaging is generally performed on a four-modality input, including T1, contrast T1, T2 and FLAIR. We hypothesize that information redundancy is present within these image combinations, which can possibly reduce a model's performance. Moreover, for clinical applications, the risk of encountering missing data rises as the number of required input modalities increases. Therefore, this study aimed to explore the relevance and influence of the different modalities used for MRI-based glioblastoma segmentation.
Methods: After the training of multiple segmentation models based on nnU-Net and SwinUNETR architectures, differing only in their amount and combinations of input modalities, each model was evaluated with regard to segmentation accuracy and epistemic uncertainty.
Results: Results show that T1CE-based segmentation (for enhanced tumor and tumor core) and T1CE-FLAIR-based segmentation (for whole tumor and overall segmentation) can reach segmentation accuracies comparable to the full-input version. Notably, the highest segmentation accuracy for nnU-Net was found for a three-input configuration of T1CE-FLAIR-T1, suggesting the confounding effect of redundant input modalities. The SwinUNETR architecture appears to suffer less from this, where said three-input and the full-input model yielded statistically equal results.
Conclusion: The T1CE-FLAIR-based model can therefore be considered as a minimal-input alternative to the full-input configuration. Addition of modalities beyond this does not statistically improve and can even deteriorate accuracy, but does lower the segmentation uncertainty.
期刊介绍:
The International Journal for Computer Assisted Radiology and Surgery (IJCARS) is a peer-reviewed journal that provides a platform for closing the gap between medical and technical disciplines, and encourages interdisciplinary research and development activities in an international environment.