{"title":"自适应邻域三重丢失:通过挖掘像素信息增强皮肤镜数据集的分割能力","authors":"Mohan Xu, Lena Wiese","doi":"10.1007/s11548-024-03241-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The integration of deep learning in image segmentation technology markedly improves the automation capabilities of medical diagnostic systems, reducing the dependence on the clinical expertise of medical professionals. However, the accuracy of image segmentation is still impacted by various interference factors encountered during image acquisition.</p><p><strong>Methods: </strong>To address this challenge, this paper proposes a loss function designed to mine specific pixel information which dynamically changes during training process. Based on the triplet concept, this dynamic change is leveraged to drive the predicted boundaries of images closer to the real boundaries.</p><p><strong>Results: </strong>Extensive experiments on the PH2 and ISIC2017 dermoscopy datasets validate that our proposed loss function overcomes the limitations of traditional triplet loss methods in image segmentation applications. This loss function not only enhances Jaccard indices of neural networks by 2.42 <math><mo>%</mo></math> and 2.21 <math><mo>%</mo></math> for PH2 and ISIC2017, respectively, but also neural networks utilizing this loss function generally surpass those that do not in terms of segmentation performance.</p><p><strong>Conclusion: </strong>This work proposed a loss function that mined the information of specific pixels deeply without incurring additional training costs, significantly improving the automation of neural networks in image segmentation tasks. This loss function adapts to dermoscopic images of varying qualities and demonstrates higher effectiveness and robustness compared to other boundary loss functions, making it suitable for image segmentation tasks across various neural networks.</p>","PeriodicalId":51251,"journal":{"name":"International Journal of Computer Assisted Radiology and Surgery","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive neighborhood triplet loss: enhanced segmentation of dermoscopy datasets by mining pixel information.\",\"authors\":\"Mohan Xu, Lena Wiese\",\"doi\":\"10.1007/s11548-024-03241-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>The integration of deep learning in image segmentation technology markedly improves the automation capabilities of medical diagnostic systems, reducing the dependence on the clinical expertise of medical professionals. However, the accuracy of image segmentation is still impacted by various interference factors encountered during image acquisition.</p><p><strong>Methods: </strong>To address this challenge, this paper proposes a loss function designed to mine specific pixel information which dynamically changes during training process. Based on the triplet concept, this dynamic change is leveraged to drive the predicted boundaries of images closer to the real boundaries.</p><p><strong>Results: </strong>Extensive experiments on the PH2 and ISIC2017 dermoscopy datasets validate that our proposed loss function overcomes the limitations of traditional triplet loss methods in image segmentation applications. This loss function not only enhances Jaccard indices of neural networks by 2.42 <math><mo>%</mo></math> and 2.21 <math><mo>%</mo></math> for PH2 and ISIC2017, respectively, but also neural networks utilizing this loss function generally surpass those that do not in terms of segmentation performance.</p><p><strong>Conclusion: </strong>This work proposed a loss function that mined the information of specific pixels deeply without incurring additional training costs, significantly improving the automation of neural networks in image segmentation tasks. This loss function adapts to dermoscopic images of varying qualities and demonstrates higher effectiveness and robustness compared to other boundary loss functions, making it suitable for image segmentation tasks across various neural networks.</p>\",\"PeriodicalId\":51251,\"journal\":{\"name\":\"International Journal of Computer Assisted Radiology and Surgery\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Assisted Radiology and Surgery\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11548-024-03241-9\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Assisted Radiology and Surgery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11548-024-03241-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Adaptive neighborhood triplet loss: enhanced segmentation of dermoscopy datasets by mining pixel information.
Purpose: The integration of deep learning in image segmentation technology markedly improves the automation capabilities of medical diagnostic systems, reducing the dependence on the clinical expertise of medical professionals. However, the accuracy of image segmentation is still impacted by various interference factors encountered during image acquisition.
Methods: To address this challenge, this paper proposes a loss function designed to mine specific pixel information which dynamically changes during training process. Based on the triplet concept, this dynamic change is leveraged to drive the predicted boundaries of images closer to the real boundaries.
Results: Extensive experiments on the PH2 and ISIC2017 dermoscopy datasets validate that our proposed loss function overcomes the limitations of traditional triplet loss methods in image segmentation applications. This loss function not only enhances Jaccard indices of neural networks by 2.42 and 2.21 for PH2 and ISIC2017, respectively, but also neural networks utilizing this loss function generally surpass those that do not in terms of segmentation performance.
Conclusion: This work proposed a loss function that mined the information of specific pixels deeply without incurring additional training costs, significantly improving the automation of neural networks in image segmentation tasks. This loss function adapts to dermoscopic images of varying qualities and demonstrates higher effectiveness and robustness compared to other boundary loss functions, making it suitable for image segmentation tasks across various neural networks.
期刊介绍:
The International Journal for Computer Assisted Radiology and Surgery (IJCARS) is a peer-reviewed journal that provides a platform for closing the gap between medical and technical disciplines, and encourages interdisciplinary research and development activities in an international environment.