Aaron Jun Yi Yap, Desmond Chun Hwee Teo, Pei San Ang, Eng Soo Yap, Siew Har Tan, Celine Wei Ping Loke, Sreemanee Raaj Dorajoo
{"title":"在电子健康记录上验证大出血和临床相关的非大出血表型算法。","authors":"Aaron Jun Yi Yap, Desmond Chun Hwee Teo, Pei San Ang, Eng Soo Yap, Siew Har Tan, Celine Wei Ping Loke, Sreemanee Raaj Dorajoo","doi":"10.1002/pds.5875","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Bleeding is an important health outcome of interest in epidemiological studies. We aimed to develop and validate rule-based algorithms to identify (1) major bleeding and (2) all clinically relevant bleeding (CRB) (composite of major and all clinically relevant nonmajor bleeding) within real-world electronic healthcare data.</p><p><strong>Methods: </strong>We took a random sample (n = 1630) of inpatient admissions to Singapore public healthcare institutions in 2019 and 2020, stratifying by hospital and year. We included patients of all age groups, sex, and ethnicities. Presence of major bleeding and CRB were ascertained by two annotators through chart review. A total of 630 and 1000 records were used for algorithm development and validation, respectively. We formulated two algorithms: sensitivity- and positive predictive value (PPV)-optimized algorithms. A combination of hemoglobin test patterns and diagnosis codes were used in the final algorithms.</p><p><strong>Results: </strong>During validation, diagnosis codes alone yielded low sensitivities for major bleeding (0.16) and CRB (0.24), although specificities and PPV were high (>0.97). For major bleeding, the sensitivity-optimized algorithm had much higher sensitivity and negative predictive values (NPVs) (sensitivity = 0.94, NPV = 1.00), however false positive rates were also relatively high (specificity = 0.90, PPV = 0.34). PPV-optimized algorithm had improved specificity and PPV (specificity = 0.96, PPV = 0.52), with little reduction in sensitivity and NPV (sensitivity = 0.88, NPV = 0.99). For CRB events, our algorithms had lower sensitivities (0.50-0.56).</p><p><strong>Conclusions: </strong>The use of diagnosis codes alone misses many genuine major bleeding events. We have developed major bleeding algorithms with high sensitivities, which can ascertain events within populations of interest.</p>","PeriodicalId":19782,"journal":{"name":"Pharmacoepidemiology and Drug Safety","volume":"33 8","pages":"e5875"},"PeriodicalIF":2.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Validation of a Major and Clinically Relevant Nonmajor Bleeding Phenotyping Algorithm on Electronic Health Records.\",\"authors\":\"Aaron Jun Yi Yap, Desmond Chun Hwee Teo, Pei San Ang, Eng Soo Yap, Siew Har Tan, Celine Wei Ping Loke, Sreemanee Raaj Dorajoo\",\"doi\":\"10.1002/pds.5875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Bleeding is an important health outcome of interest in epidemiological studies. We aimed to develop and validate rule-based algorithms to identify (1) major bleeding and (2) all clinically relevant bleeding (CRB) (composite of major and all clinically relevant nonmajor bleeding) within real-world electronic healthcare data.</p><p><strong>Methods: </strong>We took a random sample (n = 1630) of inpatient admissions to Singapore public healthcare institutions in 2019 and 2020, stratifying by hospital and year. We included patients of all age groups, sex, and ethnicities. Presence of major bleeding and CRB were ascertained by two annotators through chart review. A total of 630 and 1000 records were used for algorithm development and validation, respectively. We formulated two algorithms: sensitivity- and positive predictive value (PPV)-optimized algorithms. A combination of hemoglobin test patterns and diagnosis codes were used in the final algorithms.</p><p><strong>Results: </strong>During validation, diagnosis codes alone yielded low sensitivities for major bleeding (0.16) and CRB (0.24), although specificities and PPV were high (>0.97). For major bleeding, the sensitivity-optimized algorithm had much higher sensitivity and negative predictive values (NPVs) (sensitivity = 0.94, NPV = 1.00), however false positive rates were also relatively high (specificity = 0.90, PPV = 0.34). PPV-optimized algorithm had improved specificity and PPV (specificity = 0.96, PPV = 0.52), with little reduction in sensitivity and NPV (sensitivity = 0.88, NPV = 0.99). For CRB events, our algorithms had lower sensitivities (0.50-0.56).</p><p><strong>Conclusions: </strong>The use of diagnosis codes alone misses many genuine major bleeding events. We have developed major bleeding algorithms with high sensitivities, which can ascertain events within populations of interest.</p>\",\"PeriodicalId\":19782,\"journal\":{\"name\":\"Pharmacoepidemiology and Drug Safety\",\"volume\":\"33 8\",\"pages\":\"e5875\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmacoepidemiology and Drug Safety\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/pds.5875\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacoepidemiology and Drug Safety","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/pds.5875","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Validation of a Major and Clinically Relevant Nonmajor Bleeding Phenotyping Algorithm on Electronic Health Records.
Purpose: Bleeding is an important health outcome of interest in epidemiological studies. We aimed to develop and validate rule-based algorithms to identify (1) major bleeding and (2) all clinically relevant bleeding (CRB) (composite of major and all clinically relevant nonmajor bleeding) within real-world electronic healthcare data.
Methods: We took a random sample (n = 1630) of inpatient admissions to Singapore public healthcare institutions in 2019 and 2020, stratifying by hospital and year. We included patients of all age groups, sex, and ethnicities. Presence of major bleeding and CRB were ascertained by two annotators through chart review. A total of 630 and 1000 records were used for algorithm development and validation, respectively. We formulated two algorithms: sensitivity- and positive predictive value (PPV)-optimized algorithms. A combination of hemoglobin test patterns and diagnosis codes were used in the final algorithms.
Results: During validation, diagnosis codes alone yielded low sensitivities for major bleeding (0.16) and CRB (0.24), although specificities and PPV were high (>0.97). For major bleeding, the sensitivity-optimized algorithm had much higher sensitivity and negative predictive values (NPVs) (sensitivity = 0.94, NPV = 1.00), however false positive rates were also relatively high (specificity = 0.90, PPV = 0.34). PPV-optimized algorithm had improved specificity and PPV (specificity = 0.96, PPV = 0.52), with little reduction in sensitivity and NPV (sensitivity = 0.88, NPV = 0.99). For CRB events, our algorithms had lower sensitivities (0.50-0.56).
Conclusions: The use of diagnosis codes alone misses many genuine major bleeding events. We have developed major bleeding algorithms with high sensitivities, which can ascertain events within populations of interest.
期刊介绍:
The aim of Pharmacoepidemiology and Drug Safety is to provide an international forum for the communication and evaluation of data, methods and opinion in the discipline of pharmacoepidemiology. The Journal publishes peer-reviewed reports of original research, invited reviews and a variety of guest editorials and commentaries embracing scientific, medical, statistical, legal and economic aspects of pharmacoepidemiology and post-marketing surveillance of drug safety. Appropriate material in these categories may also be considered for publication as a Brief Report.
Particular areas of interest include:
design, analysis, results, and interpretation of studies looking at the benefit or safety of specific pharmaceuticals, biologics, or medical devices, including studies in pharmacovigilance, postmarketing surveillance, pharmacoeconomics, patient safety, molecular pharmacoepidemiology, or any other study within the broad field of pharmacoepidemiology;
comparative effectiveness research relating to pharmaceuticals, biologics, and medical devices. Comparative effectiveness research is the generation and synthesis of evidence that compares the benefits and harms of alternative methods to prevent, diagnose, treat, and monitor a clinical condition, as these methods are truly used in the real world;
methodologic contributions of relevance to pharmacoepidemiology, whether original contributions, reviews of existing methods, or tutorials for how to apply the methods of pharmacoepidemiology;
assessments of harm versus benefit in drug therapy;
patterns of drug utilization;
relationships between pharmacoepidemiology and the formulation and interpretation of regulatory guidelines;
evaluations of risk management plans and programmes relating to pharmaceuticals, biologics and medical devices.