心内膜萌芽顶端细胞指定冠状动脉化

IF 16.5 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Circulation research Pub Date : 2024-08-30 Epub Date: 2024-08-02 DOI:10.1161/CIRCRESAHA.124.324868
Elena Cano, Jennifer Schwarzkopf, Masatoshi Kanda, Eric L Lindberg, Irene Hollfinger, Cristina Pogontke, Caroline Braeuning, Cornelius Fischer, Norbert Hübner, Holger Gerhardt
{"title":"心内膜萌芽顶端细胞指定冠状动脉化","authors":"Elena Cano, Jennifer Schwarzkopf, Masatoshi Kanda, Eric L Lindberg, Irene Hollfinger, Cristina Pogontke, Caroline Braeuning, Cornelius Fischer, Norbert Hübner, Holger Gerhardt","doi":"10.1161/CIRCRESAHA.124.324868","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The elaborate patterning of coronary arteries critically supports the high metabolic activity of the beating heart. How coronary endothelial cells coordinate hierarchical vascular remodeling and achieve arteriovenous specification remains largely unknown. Understanding the molecular and cellular cues that pattern coronary arteries is crucial to develop innovative therapeutic strategies that restore functional perfusion within the ischemic heart.</p><p><strong>Methods: </strong>Single-cell transcriptomics and histological validation were used to delineate heterogeneous transcriptional states of the developing and mature coronary endothelium with a focus on sprouting endothelium and arterial cell specification. Genetic lineage tracing and high-resolution 3-dimensional imaging were used to characterize the origin and mechanisms of coronary angiogenic sprouting, as well as to fate-map selective endothelial lineages. Integration of single-cell transcriptomic data from ischemic adult mouse hearts and human embryonic data served to assess the conservation of transcriptional states across development, disease, and species.</p><p><strong>Results: </strong>We discover that coronary arteries originate from cells that have previously transitioned through a specific tip cell phenotype. We identify nonoverlapping intramyocardial and subepicardial tip cell populations with differential gene expression profiles and regulatory pathways. <i>Esm1</i>-lineage tracing confirmed that intramyocardial tip cells selectively contribute to coronary arteries and endocardial tunnels, but not veins. Notably, prearterial cells are detected from development stages to adulthood, increasingly in response to ischemic injury, and in human embryos, suggesting that tip cell-to-artery specification is a conserved mechanism.</p><p><strong>Conclusions: </strong>A tip cell-to-artery specification mechanism drives arterialization of the intramyocardial plexus and endocardial tunnels throughout life and is reactivated upon ischemic injury. Differential sprouting programs govern the formation and specification of the venous and arterial coronary plexus.</p>","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":null,"pages":null},"PeriodicalIF":16.5000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11361357/pdf/","citationCount":"0","resultStr":"{\"title\":\"Intramyocardial Sprouting Tip Cells Specify Coronary Arterialization.\",\"authors\":\"Elena Cano, Jennifer Schwarzkopf, Masatoshi Kanda, Eric L Lindberg, Irene Hollfinger, Cristina Pogontke, Caroline Braeuning, Cornelius Fischer, Norbert Hübner, Holger Gerhardt\",\"doi\":\"10.1161/CIRCRESAHA.124.324868\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The elaborate patterning of coronary arteries critically supports the high metabolic activity of the beating heart. How coronary endothelial cells coordinate hierarchical vascular remodeling and achieve arteriovenous specification remains largely unknown. Understanding the molecular and cellular cues that pattern coronary arteries is crucial to develop innovative therapeutic strategies that restore functional perfusion within the ischemic heart.</p><p><strong>Methods: </strong>Single-cell transcriptomics and histological validation were used to delineate heterogeneous transcriptional states of the developing and mature coronary endothelium with a focus on sprouting endothelium and arterial cell specification. Genetic lineage tracing and high-resolution 3-dimensional imaging were used to characterize the origin and mechanisms of coronary angiogenic sprouting, as well as to fate-map selective endothelial lineages. Integration of single-cell transcriptomic data from ischemic adult mouse hearts and human embryonic data served to assess the conservation of transcriptional states across development, disease, and species.</p><p><strong>Results: </strong>We discover that coronary arteries originate from cells that have previously transitioned through a specific tip cell phenotype. We identify nonoverlapping intramyocardial and subepicardial tip cell populations with differential gene expression profiles and regulatory pathways. <i>Esm1</i>-lineage tracing confirmed that intramyocardial tip cells selectively contribute to coronary arteries and endocardial tunnels, but not veins. Notably, prearterial cells are detected from development stages to adulthood, increasingly in response to ischemic injury, and in human embryos, suggesting that tip cell-to-artery specification is a conserved mechanism.</p><p><strong>Conclusions: </strong>A tip cell-to-artery specification mechanism drives arterialization of the intramyocardial plexus and endocardial tunnels throughout life and is reactivated upon ischemic injury. Differential sprouting programs govern the formation and specification of the venous and arterial coronary plexus.</p>\",\"PeriodicalId\":10147,\"journal\":{\"name\":\"Circulation research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.5000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11361357/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Circulation research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1161/CIRCRESAHA.124.324868\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/CIRCRESAHA.124.324868","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

背景:冠状动脉精心设计的形态为心脏的高代谢活动提供了重要支持。冠状动脉内皮细胞如何协调分层血管重塑并实现动静脉规格化在很大程度上仍是未知数。了解冠状动脉模式化的分子和细胞线索对于开发创新治疗策略以恢复缺血心脏的功能灌注至关重要:方法:利用单细胞转录组学和组织学验证来描绘发育中和成熟冠状动脉内皮的异质性转录状态,重点关注萌芽内皮和动脉细胞规格。基因谱系追踪和高分辨率三维成像被用来描述冠状动脉血管新生萌芽的起源和机制,以及选择性内皮谱系的命运图谱。通过整合缺血成年小鼠心脏的单细胞转录组数据和人类胚胎数据,评估了转录状态在发育、疾病和物种间的一致性:结果:我们发现冠状动脉起源于先前通过特定尖端细胞表型过渡的细胞。我们发现了非重叠的心内膜和心外膜下尖端细胞群,它们具有不同的基因表达谱和调控途径。Esm1 系谱追踪证实,心内膜尖端细胞选择性地形成冠状动脉和心内膜隧道,而不是静脉。值得注意的是,在人类胚胎中,从发育阶段到成年期都能检测到动脉前叶细胞,缺血损伤时也能检测到越来越多的动脉前叶细胞,这表明尖端细胞到动脉的分化是一种保守的机制:结论:尖端细胞到动脉的分化机制在整个生命过程中驱动着心内膜丛和心内膜隧道的动脉化,并在缺血损伤时被重新激活。不同的发芽程序支配着静脉和动脉冠状动脉丛的形成和规格化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intramyocardial Sprouting Tip Cells Specify Coronary Arterialization.

Background: The elaborate patterning of coronary arteries critically supports the high metabolic activity of the beating heart. How coronary endothelial cells coordinate hierarchical vascular remodeling and achieve arteriovenous specification remains largely unknown. Understanding the molecular and cellular cues that pattern coronary arteries is crucial to develop innovative therapeutic strategies that restore functional perfusion within the ischemic heart.

Methods: Single-cell transcriptomics and histological validation were used to delineate heterogeneous transcriptional states of the developing and mature coronary endothelium with a focus on sprouting endothelium and arterial cell specification. Genetic lineage tracing and high-resolution 3-dimensional imaging were used to characterize the origin and mechanisms of coronary angiogenic sprouting, as well as to fate-map selective endothelial lineages. Integration of single-cell transcriptomic data from ischemic adult mouse hearts and human embryonic data served to assess the conservation of transcriptional states across development, disease, and species.

Results: We discover that coronary arteries originate from cells that have previously transitioned through a specific tip cell phenotype. We identify nonoverlapping intramyocardial and subepicardial tip cell populations with differential gene expression profiles and regulatory pathways. Esm1-lineage tracing confirmed that intramyocardial tip cells selectively contribute to coronary arteries and endocardial tunnels, but not veins. Notably, prearterial cells are detected from development stages to adulthood, increasingly in response to ischemic injury, and in human embryos, suggesting that tip cell-to-artery specification is a conserved mechanism.

Conclusions: A tip cell-to-artery specification mechanism drives arterialization of the intramyocardial plexus and endocardial tunnels throughout life and is reactivated upon ischemic injury. Differential sprouting programs govern the formation and specification of the venous and arterial coronary plexus.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Circulation research
Circulation research 医学-外周血管病
CiteScore
29.60
自引率
2.00%
发文量
535
审稿时长
3-6 weeks
期刊介绍: Circulation Research is a peer-reviewed journal that serves as a forum for the highest quality research in basic cardiovascular biology. The journal publishes studies that utilize state-of-the-art approaches to investigate mechanisms of human disease, as well as translational and clinical research that provide fundamental insights into the basis of disease and the mechanism of therapies. Circulation Research has a broad audience that includes clinical and academic cardiologists, basic cardiovascular scientists, physiologists, cellular and molecular biologists, and cardiovascular pharmacologists. The journal aims to advance the understanding of cardiovascular biology and disease by disseminating cutting-edge research to these diverse communities. In terms of indexing, Circulation Research is included in several prominent scientific databases, including BIOSIS, CAB Abstracts, Chemical Abstracts, Current Contents, EMBASE, and MEDLINE. This ensures that the journal's articles are easily discoverable and accessible to researchers in the field. Overall, Circulation Research is a reputable publication that attracts high-quality research and provides a platform for the dissemination of important findings in basic cardiovascular biology and its translational and clinical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信