Jin Hee Kim, Jin Se Kim, In Gyoung Ju, Eugene Huh, Yujin Choi, Seungmin Lee, Jun-Young Cho, Boyoung Y Park, Myung Sook Oh
{"title":"6-Shogaol 和左旋多巴联合用药可缓解小鼠帕金森病相关病理变化","authors":"Jin Hee Kim, Jin Se Kim, In Gyoung Ju, Eugene Huh, Yujin Choi, Seungmin Lee, Jun-Young Cho, Boyoung Y Park, Myung Sook Oh","doi":"10.4062/biomolther.2024.075","DOIUrl":null,"url":null,"abstract":"<p><p>Parkinson's disease (PD) is a neurodegenerative disease caused by the death of dopaminergic neurons in the nigrostriatal pathway, leading to motor and non-motor dysfunctions, such as depression, olfactory dysfunction, and memory impairment. Although levodopa (L-dopa) has been the gold standard PD treatment for decades, it only relieves motor symptoms and has no effect on non-motor symptoms or disease progression. Prior studies have reported that 6-shogaol, the active ingredient in ginger, exerts a protective effect on dopaminergic neurons by suppressing neuroinflammation in PD mice. This study investigated whether cotreatment with 6-shogaol and L-dopa could attenuate both motor and non-motor symptoms and dopaminergic neuronal damage. Both 6-shogaol (20 mg/kg) and L-dopa (80 mg/kg) were orally administered to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid- induced PD model mice for 26 days. The experimental results showed that L-dopa alleviated motor symptoms, but had no significant effect on non-motor symptoms, loss of dopaminergic neuron, or neuroinflammation. However, when mice were treated with 6-shogaol alone or in combination L-dopa, an amelioration in both motor and non-motor symptoms such as depression-like behavior, olfactory dysfunction and memory impairment was observed. Moreover, 6-shogaol-only or co-treatment with 6-shogaol and L-dopa protected dopaminergic neurons in the striatum and reduced neuroinflammation in the striatum and substantia nigra. Overall, these results suggest that 6-shogaol can effectively complement L-dopa by improving non-motor dysfunction and restoring dopaminergic neurons via suppressing neuroinflammation.</p>","PeriodicalId":8949,"journal":{"name":"Biomolecules & Therapeutics","volume":" ","pages":"523-530"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11392672/pdf/","citationCount":"0","resultStr":"{\"title\":\"Coadministration of 6-Shogaol and Levodopa Alleviates Parkinson's Disease-Related Pathology in Mice.\",\"authors\":\"Jin Hee Kim, Jin Se Kim, In Gyoung Ju, Eugene Huh, Yujin Choi, Seungmin Lee, Jun-Young Cho, Boyoung Y Park, Myung Sook Oh\",\"doi\":\"10.4062/biomolther.2024.075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Parkinson's disease (PD) is a neurodegenerative disease caused by the death of dopaminergic neurons in the nigrostriatal pathway, leading to motor and non-motor dysfunctions, such as depression, olfactory dysfunction, and memory impairment. Although levodopa (L-dopa) has been the gold standard PD treatment for decades, it only relieves motor symptoms and has no effect on non-motor symptoms or disease progression. Prior studies have reported that 6-shogaol, the active ingredient in ginger, exerts a protective effect on dopaminergic neurons by suppressing neuroinflammation in PD mice. This study investigated whether cotreatment with 6-shogaol and L-dopa could attenuate both motor and non-motor symptoms and dopaminergic neuronal damage. Both 6-shogaol (20 mg/kg) and L-dopa (80 mg/kg) were orally administered to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid- induced PD model mice for 26 days. The experimental results showed that L-dopa alleviated motor symptoms, but had no significant effect on non-motor symptoms, loss of dopaminergic neuron, or neuroinflammation. However, when mice were treated with 6-shogaol alone or in combination L-dopa, an amelioration in both motor and non-motor symptoms such as depression-like behavior, olfactory dysfunction and memory impairment was observed. Moreover, 6-shogaol-only or co-treatment with 6-shogaol and L-dopa protected dopaminergic neurons in the striatum and reduced neuroinflammation in the striatum and substantia nigra. Overall, these results suggest that 6-shogaol can effectively complement L-dopa by improving non-motor dysfunction and restoring dopaminergic neurons via suppressing neuroinflammation.</p>\",\"PeriodicalId\":8949,\"journal\":{\"name\":\"Biomolecules & Therapeutics\",\"volume\":\" \",\"pages\":\"523-530\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11392672/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecules & Therapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4062/biomolther.2024.075\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules & Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4062/biomolther.2024.075","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Coadministration of 6-Shogaol and Levodopa Alleviates Parkinson's Disease-Related Pathology in Mice.
Parkinson's disease (PD) is a neurodegenerative disease caused by the death of dopaminergic neurons in the nigrostriatal pathway, leading to motor and non-motor dysfunctions, such as depression, olfactory dysfunction, and memory impairment. Although levodopa (L-dopa) has been the gold standard PD treatment for decades, it only relieves motor symptoms and has no effect on non-motor symptoms or disease progression. Prior studies have reported that 6-shogaol, the active ingredient in ginger, exerts a protective effect on dopaminergic neurons by suppressing neuroinflammation in PD mice. This study investigated whether cotreatment with 6-shogaol and L-dopa could attenuate both motor and non-motor symptoms and dopaminergic neuronal damage. Both 6-shogaol (20 mg/kg) and L-dopa (80 mg/kg) were orally administered to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid- induced PD model mice for 26 days. The experimental results showed that L-dopa alleviated motor symptoms, but had no significant effect on non-motor symptoms, loss of dopaminergic neuron, or neuroinflammation. However, when mice were treated with 6-shogaol alone or in combination L-dopa, an amelioration in both motor and non-motor symptoms such as depression-like behavior, olfactory dysfunction and memory impairment was observed. Moreover, 6-shogaol-only or co-treatment with 6-shogaol and L-dopa protected dopaminergic neurons in the striatum and reduced neuroinflammation in the striatum and substantia nigra. Overall, these results suggest that 6-shogaol can effectively complement L-dopa by improving non-motor dysfunction and restoring dopaminergic neurons via suppressing neuroinflammation.
期刊介绍:
Biomolecules & Therapeutics (Biomolecules & Therapeutics) (Print ISSN 1976-9148, Online ISSN 2005-4483) is an international, peer-reviewed, open access journal that covers pharmacological and toxicological fields related to bioactive molecules and therapeutics. It was launched in 1993 as "The Journal of Applied Pharmacology (ISSN 1225-6110)", and renamed "Biomolecules & Therapeutics" (Biomol Ther: abbreviated form) in 2008 (Volume 16, No. 1). It is published bimonthly in January, March, May, July, September and November. All manuscripts should be creative, informative, and contribute to the development of new drugs. Articles in the following categories are published: review articles and research articles.