Juan Li, Tingting Chen, Kai Gao, Yinxuan Xue, Ruqian Wu, Bin Guo, Zhong Chen, Shanwen Li, Ren-Gang Zhang, Kai-Hua Jia, Jian-Feng Mao, Xinmin An
{"title":"通过单倍型解析基因组组装和比较基因组学分析,揭示杨树物种中带有 \"ZY \"和独特的 2.15-2.95 Mb 反转的新型性别决定基因型。","authors":"Juan Li, Tingting Chen, Kai Gao, Yinxuan Xue, Ruqian Wu, Bin Guo, Zhong Chen, Shanwen Li, Ren-Gang Zhang, Kai-Hua Jia, Jian-Feng Mao, Xinmin An","doi":"10.1111/1755-0998.14002","DOIUrl":null,"url":null,"abstract":"<p><i>Populus tomentosa</i>, an indigenous tree species, is widely distributed and cultivated over 1,000,000 km<sup>2</sup> in China, contributing significantly to forest production, ecological conservation and urban–rural greening. Although a reference genome is available for <i>P. tomentosa</i>, the intricate interspecific hybrid origins, chromosome structural variations (SVs) and sex determination mechanisms remain confusion and unclear due to its broad and even overlapping geographical distribution, extensive morphological variations and cross infiltration among white poplar species. We conducted a haplotype-resolved de novo assembly of <i>P. tomentosa</i> elite individual GM107, which comprises subgenomes a and b with a total genome size of 714.9 Mb. We then analysed the formation of hybrid species and the phylogenetic evolution and sex differentiation across the entire genus. Phylogenomic analyses suggested that GM107 likely originated from a hybridisation event between <i>P. alba</i> (♀) and <i>P. davidiana</i> (♂) which diverged at approximately 3.8 Mya. A total of 1551 chromosome SVs were identified between the two subgenomes. More noteworthily, a distinctive inversion structure spanning 2.15–2.95 Mb was unveiled among <i>Populus</i>, <i>Tacamahaca</i>, <i>Turaga</i>, <i>Aigeiros</i> poplar species and <i>Salix</i>, highlighting a unique evolutionary feature. Intriguingly, a novel sex genotype of the ZY type, which represents a crossover between XY and ZW systems, was identified and confirmed through both natural and artificial hybrids populations. These novel insights offer significant theoretical value for the study of the species' evolutionary origins and serve as a valuable resource for ecological genetics and forest biotechnology.</p>","PeriodicalId":211,"journal":{"name":"Molecular Ecology Resources","volume":"24 7","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unravelling the novel sex determination genotype with ‘ZY’ and a distinctive 2.15–2.95 Mb inversion among poplar species through haplotype-resolved genome assembly and comparative genomics analysis\",\"authors\":\"Juan Li, Tingting Chen, Kai Gao, Yinxuan Xue, Ruqian Wu, Bin Guo, Zhong Chen, Shanwen Li, Ren-Gang Zhang, Kai-Hua Jia, Jian-Feng Mao, Xinmin An\",\"doi\":\"10.1111/1755-0998.14002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><i>Populus tomentosa</i>, an indigenous tree species, is widely distributed and cultivated over 1,000,000 km<sup>2</sup> in China, contributing significantly to forest production, ecological conservation and urban–rural greening. Although a reference genome is available for <i>P. tomentosa</i>, the intricate interspecific hybrid origins, chromosome structural variations (SVs) and sex determination mechanisms remain confusion and unclear due to its broad and even overlapping geographical distribution, extensive morphological variations and cross infiltration among white poplar species. We conducted a haplotype-resolved de novo assembly of <i>P. tomentosa</i> elite individual GM107, which comprises subgenomes a and b with a total genome size of 714.9 Mb. We then analysed the formation of hybrid species and the phylogenetic evolution and sex differentiation across the entire genus. Phylogenomic analyses suggested that GM107 likely originated from a hybridisation event between <i>P. alba</i> (♀) and <i>P. davidiana</i> (♂) which diverged at approximately 3.8 Mya. A total of 1551 chromosome SVs were identified between the two subgenomes. More noteworthily, a distinctive inversion structure spanning 2.15–2.95 Mb was unveiled among <i>Populus</i>, <i>Tacamahaca</i>, <i>Turaga</i>, <i>Aigeiros</i> poplar species and <i>Salix</i>, highlighting a unique evolutionary feature. Intriguingly, a novel sex genotype of the ZY type, which represents a crossover between XY and ZW systems, was identified and confirmed through both natural and artificial hybrids populations. These novel insights offer significant theoretical value for the study of the species' evolutionary origins and serve as a valuable resource for ecological genetics and forest biotechnology.</p>\",\"PeriodicalId\":211,\"journal\":{\"name\":\"Molecular Ecology Resources\",\"volume\":\"24 7\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Ecology Resources\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1755-0998.14002\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology Resources","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1755-0998.14002","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Unravelling the novel sex determination genotype with ‘ZY’ and a distinctive 2.15–2.95 Mb inversion among poplar species through haplotype-resolved genome assembly and comparative genomics analysis
Populus tomentosa, an indigenous tree species, is widely distributed and cultivated over 1,000,000 km2 in China, contributing significantly to forest production, ecological conservation and urban–rural greening. Although a reference genome is available for P. tomentosa, the intricate interspecific hybrid origins, chromosome structural variations (SVs) and sex determination mechanisms remain confusion and unclear due to its broad and even overlapping geographical distribution, extensive morphological variations and cross infiltration among white poplar species. We conducted a haplotype-resolved de novo assembly of P. tomentosa elite individual GM107, which comprises subgenomes a and b with a total genome size of 714.9 Mb. We then analysed the formation of hybrid species and the phylogenetic evolution and sex differentiation across the entire genus. Phylogenomic analyses suggested that GM107 likely originated from a hybridisation event between P. alba (♀) and P. davidiana (♂) which diverged at approximately 3.8 Mya. A total of 1551 chromosome SVs were identified between the two subgenomes. More noteworthily, a distinctive inversion structure spanning 2.15–2.95 Mb was unveiled among Populus, Tacamahaca, Turaga, Aigeiros poplar species and Salix, highlighting a unique evolutionary feature. Intriguingly, a novel sex genotype of the ZY type, which represents a crossover between XY and ZW systems, was identified and confirmed through both natural and artificial hybrids populations. These novel insights offer significant theoretical value for the study of the species' evolutionary origins and serve as a valuable resource for ecological genetics and forest biotechnology.
期刊介绍:
Molecular Ecology Resources promotes the creation of comprehensive resources for the scientific community, encompassing computer programs, statistical and molecular advancements, and a diverse array of molecular tools. Serving as a conduit for disseminating these resources, the journal targets a broad audience of researchers in the fields of evolution, ecology, and conservation. Articles in Molecular Ecology Resources are crafted to support investigations tackling significant questions within these disciplines.
In addition to original resource articles, Molecular Ecology Resources features Reviews, Opinions, and Comments relevant to the field. The journal also periodically releases Special Issues focusing on resource development within specific areas.