{"title":"奇异边界吹胀蒙日-安培问题的严格凸解:存在性与渐近行为","authors":"Meiqiang Feng, Xuemei Zhang","doi":"10.1007/s12220-024-01753-z","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(\\Omega \\)</span> be a smooth, bounded, strictly convex domain in <span>\\( \\mathbb {R}^N \\, (N\\ge 2)\\)</span>. Assume <span>\\(K,\\ f\\)</span> and <i>g</i> are smooth positive functions and <i>K</i>(<i>x</i>) may be singular near <span>\\(\\partial \\Omega \\)</span>. When <i>K</i> satisfies suitable conditions, we provide sufficient and necessary conditions on <i>f</i> and <i>g</i> for the existence of strictly convex solutions to the singular boundary blow-up Monge-Ampère problem </p><span>$$\\begin{aligned} M[u]=K(x)[f(u)+g(u)|\\nabla u|^q] \\text{ for } x \\in \\Omega ,\\; u(x)\\rightarrow +\\infty \\text{ as } \\textrm{dist}(x,\\partial \\Omega )\\rightarrow 0, \\end{aligned}$$</span><p>where <span>\\(M[u]=\\det \\, (u_{x_{i}x_{j}})\\)</span> is the Monge-Ampère operator and <span>\\(0\\le q<N+1\\)</span>. Two nonexistence results of strictly convex solution are also considered when <i>K</i> has strong singularity. In addition, we analyze the boundary asymptotic behavior of such solution by finding new structure conditions on <span>\\(K,\\ f\\)</span> and <i>g</i>. We present some examples to illustrate the applicability of our main results.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strictly Convex Solutions to the Singular Boundary Blow-Up Monge-Ampère Problems: Existence and Asymptotic Behavior\",\"authors\":\"Meiqiang Feng, Xuemei Zhang\",\"doi\":\"10.1007/s12220-024-01753-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\(\\\\Omega \\\\)</span> be a smooth, bounded, strictly convex domain in <span>\\\\( \\\\mathbb {R}^N \\\\, (N\\\\ge 2)\\\\)</span>. Assume <span>\\\\(K,\\\\ f\\\\)</span> and <i>g</i> are smooth positive functions and <i>K</i>(<i>x</i>) may be singular near <span>\\\\(\\\\partial \\\\Omega \\\\)</span>. When <i>K</i> satisfies suitable conditions, we provide sufficient and necessary conditions on <i>f</i> and <i>g</i> for the existence of strictly convex solutions to the singular boundary blow-up Monge-Ampère problem </p><span>$$\\\\begin{aligned} M[u]=K(x)[f(u)+g(u)|\\\\nabla u|^q] \\\\text{ for } x \\\\in \\\\Omega ,\\\\; u(x)\\\\rightarrow +\\\\infty \\\\text{ as } \\\\textrm{dist}(x,\\\\partial \\\\Omega )\\\\rightarrow 0, \\\\end{aligned}$$</span><p>where <span>\\\\(M[u]=\\\\det \\\\, (u_{x_{i}x_{j}})\\\\)</span> is the Monge-Ampère operator and <span>\\\\(0\\\\le q<N+1\\\\)</span>. Two nonexistence results of strictly convex solution are also considered when <i>K</i> has strong singularity. In addition, we analyze the boundary asymptotic behavior of such solution by finding new structure conditions on <span>\\\\(K,\\\\ f\\\\)</span> and <i>g</i>. We present some examples to illustrate the applicability of our main results.</p>\",\"PeriodicalId\":501200,\"journal\":{\"name\":\"The Journal of Geometric Analysis\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Geometric Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-024-01753-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01753-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
让(\Omega \)是(\mathbb {R}^N \, (N\ge 2)\)中一个光滑的、有界的、严格凸的域。假设(K,f)和g都是光滑的正函数,并且K(x)在(部分)附近可能是奇异的。当 K 满足合适的条件时,我们为奇异边界炸开蒙日-安培问题 $$\begin{aligned} 的严格凸解的存在提供了 f 和 g 的充分必要条件。M[u]=K(x)[f(u)+g(u)|\nabla u|^q] text{ for } x \in \Omega ,\; u(x)\rightarrow +\infty \text{ as }\textrm{distributed \distributed.\textrm{dist}(x,\partial \Omega )\rightarrow 0, \end{aligned}$$ 其中 \(M[u]=\det \, (u_{x_{i}x_{j}})\) 是蒙日-安培算子,并且 \(0\le q<N+1\) 是蒙日-安培算子。我们还考虑了当 K 具有强奇异性时严格凸解的两个不存在结果。此外,我们通过找到 \(K,\ f\) 和 g 的新结构条件来分析这种解的边界渐近行为。
Strictly Convex Solutions to the Singular Boundary Blow-Up Monge-Ampère Problems: Existence and Asymptotic Behavior
Let \(\Omega \) be a smooth, bounded, strictly convex domain in \( \mathbb {R}^N \, (N\ge 2)\). Assume \(K,\ f\) and g are smooth positive functions and K(x) may be singular near \(\partial \Omega \). When K satisfies suitable conditions, we provide sufficient and necessary conditions on f and g for the existence of strictly convex solutions to the singular boundary blow-up Monge-Ampère problem
$$\begin{aligned} M[u]=K(x)[f(u)+g(u)|\nabla u|^q] \text{ for } x \in \Omega ,\; u(x)\rightarrow +\infty \text{ as } \textrm{dist}(x,\partial \Omega )\rightarrow 0, \end{aligned}$$
where \(M[u]=\det \, (u_{x_{i}x_{j}})\) is the Monge-Ampère operator and \(0\le q<N+1\). Two nonexistence results of strictly convex solution are also considered when K has strong singularity. In addition, we analyze the boundary asymptotic behavior of such solution by finding new structure conditions on \(K,\ f\) and g. We present some examples to illustrate the applicability of our main results.