奇异边界吹胀蒙日-安培问题的严格凸解:存在性与渐近行为

Meiqiang Feng, Xuemei Zhang
{"title":"奇异边界吹胀蒙日-安培问题的严格凸解:存在性与渐近行为","authors":"Meiqiang Feng, Xuemei Zhang","doi":"10.1007/s12220-024-01753-z","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(\\Omega \\)</span> be a smooth, bounded, strictly convex domain in <span>\\( \\mathbb {R}^N \\, (N\\ge 2)\\)</span>. Assume <span>\\(K,\\ f\\)</span> and <i>g</i> are smooth positive functions and <i>K</i>(<i>x</i>) may be singular near <span>\\(\\partial \\Omega \\)</span>. When <i>K</i> satisfies suitable conditions, we provide sufficient and necessary conditions on <i>f</i> and <i>g</i> for the existence of strictly convex solutions to the singular boundary blow-up Monge-Ampère problem </p><span>$$\\begin{aligned} M[u]=K(x)[f(u)+g(u)|\\nabla u|^q] \\text{ for } x \\in \\Omega ,\\; u(x)\\rightarrow +\\infty \\text{ as } \\textrm{dist}(x,\\partial \\Omega )\\rightarrow 0, \\end{aligned}$$</span><p>where <span>\\(M[u]=\\det \\, (u_{x_{i}x_{j}})\\)</span> is the Monge-Ampère operator and <span>\\(0\\le q&lt;N+1\\)</span>. Two nonexistence results of strictly convex solution are also considered when <i>K</i> has strong singularity. In addition, we analyze the boundary asymptotic behavior of such solution by finding new structure conditions on <span>\\(K,\\ f\\)</span> and <i>g</i>. We present some examples to illustrate the applicability of our main results.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strictly Convex Solutions to the Singular Boundary Blow-Up Monge-Ampère Problems: Existence and Asymptotic Behavior\",\"authors\":\"Meiqiang Feng, Xuemei Zhang\",\"doi\":\"10.1007/s12220-024-01753-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\(\\\\Omega \\\\)</span> be a smooth, bounded, strictly convex domain in <span>\\\\( \\\\mathbb {R}^N \\\\, (N\\\\ge 2)\\\\)</span>. Assume <span>\\\\(K,\\\\ f\\\\)</span> and <i>g</i> are smooth positive functions and <i>K</i>(<i>x</i>) may be singular near <span>\\\\(\\\\partial \\\\Omega \\\\)</span>. When <i>K</i> satisfies suitable conditions, we provide sufficient and necessary conditions on <i>f</i> and <i>g</i> for the existence of strictly convex solutions to the singular boundary blow-up Monge-Ampère problem </p><span>$$\\\\begin{aligned} M[u]=K(x)[f(u)+g(u)|\\\\nabla u|^q] \\\\text{ for } x \\\\in \\\\Omega ,\\\\; u(x)\\\\rightarrow +\\\\infty \\\\text{ as } \\\\textrm{dist}(x,\\\\partial \\\\Omega )\\\\rightarrow 0, \\\\end{aligned}$$</span><p>where <span>\\\\(M[u]=\\\\det \\\\, (u_{x_{i}x_{j}})\\\\)</span> is the Monge-Ampère operator and <span>\\\\(0\\\\le q&lt;N+1\\\\)</span>. Two nonexistence results of strictly convex solution are also considered when <i>K</i> has strong singularity. In addition, we analyze the boundary asymptotic behavior of such solution by finding new structure conditions on <span>\\\\(K,\\\\ f\\\\)</span> and <i>g</i>. We present some examples to illustrate the applicability of our main results.</p>\",\"PeriodicalId\":501200,\"journal\":{\"name\":\"The Journal of Geometric Analysis\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Geometric Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-024-01753-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01753-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让(\Omega \)是(\mathbb {R}^N \, (N\ge 2)\)中一个光滑的、有界的、严格凸的域。假设(K,f)和g都是光滑的正函数,并且K(x)在(部分)附近可能是奇异的。当 K 满足合适的条件时,我们为奇异边界炸开蒙日-安培问题 $$\begin{aligned} 的严格凸解的存在提供了 f 和 g 的充分必要条件。M[u]=K(x)[f(u)+g(u)|\nabla u|^q] text{ for } x \in \Omega ,\; u(x)\rightarrow +\infty \text{ as }\textrm{distributed \distributed.\textrm{dist}(x,\partial \Omega )\rightarrow 0, \end{aligned}$$ 其中 \(M[u]=\det \, (u_{x_{i}x_{j}})\) 是蒙日-安培算子,并且 \(0\le q<N+1\) 是蒙日-安培算子。我们还考虑了当 K 具有强奇异性时严格凸解的两个不存在结果。此外,我们通过找到 \(K,\ f\) 和 g 的新结构条件来分析这种解的边界渐近行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strictly Convex Solutions to the Singular Boundary Blow-Up Monge-Ampère Problems: Existence and Asymptotic Behavior

Let \(\Omega \) be a smooth, bounded, strictly convex domain in \( \mathbb {R}^N \, (N\ge 2)\). Assume \(K,\ f\) and g are smooth positive functions and K(x) may be singular near \(\partial \Omega \). When K satisfies suitable conditions, we provide sufficient and necessary conditions on f and g for the existence of strictly convex solutions to the singular boundary blow-up Monge-Ampère problem

$$\begin{aligned} M[u]=K(x)[f(u)+g(u)|\nabla u|^q] \text{ for } x \in \Omega ,\; u(x)\rightarrow +\infty \text{ as } \textrm{dist}(x,\partial \Omega )\rightarrow 0, \end{aligned}$$

where \(M[u]=\det \, (u_{x_{i}x_{j}})\) is the Monge-Ampère operator and \(0\le q<N+1\). Two nonexistence results of strictly convex solution are also considered when K has strong singularity. In addition, we analyze the boundary asymptotic behavior of such solution by finding new structure conditions on \(K,\ f\) and g. We present some examples to illustrate the applicability of our main results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信