{"title":"计算大型正则矩阵对的多个 GSVD 分量的改进和改进谐波雅各比-戴维森方法","authors":"Jinzhi Huang, Zhongxiao Jia","doi":"10.1007/s11075-024-01901-0","DOIUrl":null,"url":null,"abstract":"<p>Three refined and refined harmonic extraction-based Jacobi–Davidson (JD) type methods are proposed, and their thick-restart algorithms with deflation and purgation are developed to compute several generalized singular value decomposition (GSVD) components of a large regular matrix pair. The new methods are called refined cross product-free (RCPF), refined cross product-free harmonic (RCPF-harmonic) and refined inverse-free harmonic (RIF-harmonic) JDGSVD algorithms, abbreviated as RCPF-JDGSVD, RCPF-HJDGSVD and RIF-HJDGSVD, respectively. The new JDGSVD methods are more efficient than the corresponding standard and harmonic extraction-based JDSVD methods proposed previously by the authors, and can overcome the erratic behavior and intrinsic possible non-convergence of the latter ones. Numerical experiments illustrate that RCPF-JDGSVD performs better for the computation of extreme GSVD components while RCPF-HJDGSVD and RIF-HJDGSVD are more suitable for that of interior GSVD components.</p>","PeriodicalId":54709,"journal":{"name":"Numerical Algorithms","volume":"49 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Refined and refined harmonic Jacobi–Davidson methods for computing several GSVD components of a large regular matrix pair\",\"authors\":\"Jinzhi Huang, Zhongxiao Jia\",\"doi\":\"10.1007/s11075-024-01901-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Three refined and refined harmonic extraction-based Jacobi–Davidson (JD) type methods are proposed, and their thick-restart algorithms with deflation and purgation are developed to compute several generalized singular value decomposition (GSVD) components of a large regular matrix pair. The new methods are called refined cross product-free (RCPF), refined cross product-free harmonic (RCPF-harmonic) and refined inverse-free harmonic (RIF-harmonic) JDGSVD algorithms, abbreviated as RCPF-JDGSVD, RCPF-HJDGSVD and RIF-HJDGSVD, respectively. The new JDGSVD methods are more efficient than the corresponding standard and harmonic extraction-based JDSVD methods proposed previously by the authors, and can overcome the erratic behavior and intrinsic possible non-convergence of the latter ones. Numerical experiments illustrate that RCPF-JDGSVD performs better for the computation of extreme GSVD components while RCPF-HJDGSVD and RIF-HJDGSVD are more suitable for that of interior GSVD components.</p>\",\"PeriodicalId\":54709,\"journal\":{\"name\":\"Numerical Algorithms\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Algorithms\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11075-024-01901-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algorithms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11075-024-01901-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Refined and refined harmonic Jacobi–Davidson methods for computing several GSVD components of a large regular matrix pair
Three refined and refined harmonic extraction-based Jacobi–Davidson (JD) type methods are proposed, and their thick-restart algorithms with deflation and purgation are developed to compute several generalized singular value decomposition (GSVD) components of a large regular matrix pair. The new methods are called refined cross product-free (RCPF), refined cross product-free harmonic (RCPF-harmonic) and refined inverse-free harmonic (RIF-harmonic) JDGSVD algorithms, abbreviated as RCPF-JDGSVD, RCPF-HJDGSVD and RIF-HJDGSVD, respectively. The new JDGSVD methods are more efficient than the corresponding standard and harmonic extraction-based JDSVD methods proposed previously by the authors, and can overcome the erratic behavior and intrinsic possible non-convergence of the latter ones. Numerical experiments illustrate that RCPF-JDGSVD performs better for the computation of extreme GSVD components while RCPF-HJDGSVD and RIF-HJDGSVD are more suitable for that of interior GSVD components.
期刊介绍:
The journal Numerical Algorithms is devoted to numerical algorithms. It publishes original and review papers on all the aspects of numerical algorithms: new algorithms, theoretical results, implementation, numerical stability, complexity, parallel computing, subroutines, and applications. Papers on computer algebra related to obtaining numerical results will also be considered. It is intended to publish only high quality papers containing material not published elsewhere.