2-无效矩阵的等价积

IF 0.7 4区 数学 Q2 MATHEMATICS
Grigore Călugăreanu, Horia F. Pop
{"title":"2-无效矩阵的等价积","authors":"Grigore Călugăreanu, Horia F. Pop","doi":"10.1007/s41980-024-00883-y","DOIUrl":null,"url":null,"abstract":"<p>Over Prüfer domains, we characterize idempotent by nilpotent 2-products of <span>\\(2\\times 2\\)</span> matrices. Nilpotents are always such products. We also provide large classes of rings over which every <span>\\(2\\times 2\\)</span> idempotent matrix is such a product. Finally, for <span>\\(2\\times 2\\)</span> matrices over GCD domains, idempotent–nilpotent products which are also nilpotent–idempotent products are characterized.</p>","PeriodicalId":9395,"journal":{"name":"Bulletin of The Iranian Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"2-Products of Idempotent by Nilpotent Matrices\",\"authors\":\"Grigore Călugăreanu, Horia F. Pop\",\"doi\":\"10.1007/s41980-024-00883-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Over Prüfer domains, we characterize idempotent by nilpotent 2-products of <span>\\\\(2\\\\times 2\\\\)</span> matrices. Nilpotents are always such products. We also provide large classes of rings over which every <span>\\\\(2\\\\times 2\\\\)</span> idempotent matrix is such a product. Finally, for <span>\\\\(2\\\\times 2\\\\)</span> matrices over GCD domains, idempotent–nilpotent products which are also nilpotent–idempotent products are characterized.</p>\",\"PeriodicalId\":9395,\"journal\":{\"name\":\"Bulletin of The Iranian Mathematical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of The Iranian Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s41980-024-00883-y\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of The Iranian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s41980-024-00883-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在Prüfer域上,我们通过矩阵(2\times 2\) 的零potent 2-products来描述idempotent。零potent 总是这样的乘积。我们还提供了大类的环,在这些环上,每个(2次2)幂等矩阵都是这样的乘积。最后,对于 GCD 域上的\(2\times 2\) 矩阵,我们描述了偶能-零potent 乘积也是零potent-偶能乘积的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
2-Products of Idempotent by Nilpotent Matrices

Over Prüfer domains, we characterize idempotent by nilpotent 2-products of \(2\times 2\) matrices. Nilpotents are always such products. We also provide large classes of rings over which every \(2\times 2\) idempotent matrix is such a product. Finally, for \(2\times 2\) matrices over GCD domains, idempotent–nilpotent products which are also nilpotent–idempotent products are characterized.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bulletin of The Iranian Mathematical Society
Bulletin of The Iranian Mathematical Society Mathematics-General Mathematics
CiteScore
1.40
自引率
0.00%
发文量
64
期刊介绍: The Bulletin of the Iranian Mathematical Society (BIMS) publishes original research papers as well as survey articles on a variety of hot topics from distinguished mathematicians. Research papers presented comprise of innovative contributions while expository survey articles feature important results that appeal to a broad audience. Articles are expected to address active research topics and are required to cite existing (including recent) relevant literature appropriately. Papers are critically reviewed on the basis of quality in its exposition, brevity, potential applications, motivation, value and originality of the results. The BIMS takes a high standard policy against any type plagiarism. The editorial board is devoted to solicit expert referees for a fast and unbiased review process.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信