{"title":"曲面小特征值的尖锐下限","authors":"Renan Gross, Guy Lachman, Asaf Nachmias","doi":"arxiv-2407.21780","DOIUrl":null,"url":null,"abstract":"Let $S$ be a compact hyperbolic surface of genus $g\\geq 2$ and let $I(S) =\n\\frac{1}{\\mathrm{Vol}(S)}\\int_{S} \\frac{1}{\\mathrm{Inj}(x)^2 \\wedge 1} dx$,\nwhere $\\mathrm{Inj}(x)$ is the injectivity radius at $x$. We prove that for any\n$k\\in \\{1,\\ldots, 2g-3\\}$, the $k$-th eigenvalue $\\lambda_k$ of the Laplacian\nsatisfies \\begin{equation*} \\lambda_k \\geq \\frac{c k^2}{I(S) g^2} \\, , \\end{equation*} where $c>0$ is\nsome universal constant. We use this bound to prove the heat kernel estimate\n\\begin{equation*} \\frac{1}{\\mathrm{Vol}(S)} \\int_S \\Big| p_t(x,x) -\\frac{1}{\\mathrm{Vol}(S)}\n\\Big | ~dx \\leq C \\sqrt{ \\frac{I(S)}{t}} \\qquad \\forall t \\geq 1 \\, ,\n\\end{equation*} where $C<\\infty$ is some universal constant. These bounds are\noptimal in the sense that for every $g\\geq 2$ there exists a compact hyperbolic\nsurface of genus $g$ satisfying the reverse inequalities with different\nconstants.","PeriodicalId":501373,"journal":{"name":"arXiv - MATH - Spectral Theory","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A sharp lower bound on the small eigenvalues of surfaces\",\"authors\":\"Renan Gross, Guy Lachman, Asaf Nachmias\",\"doi\":\"arxiv-2407.21780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $S$ be a compact hyperbolic surface of genus $g\\\\geq 2$ and let $I(S) =\\n\\\\frac{1}{\\\\mathrm{Vol}(S)}\\\\int_{S} \\\\frac{1}{\\\\mathrm{Inj}(x)^2 \\\\wedge 1} dx$,\\nwhere $\\\\mathrm{Inj}(x)$ is the injectivity radius at $x$. We prove that for any\\n$k\\\\in \\\\{1,\\\\ldots, 2g-3\\\\}$, the $k$-th eigenvalue $\\\\lambda_k$ of the Laplacian\\nsatisfies \\\\begin{equation*} \\\\lambda_k \\\\geq \\\\frac{c k^2}{I(S) g^2} \\\\, , \\\\end{equation*} where $c>0$ is\\nsome universal constant. We use this bound to prove the heat kernel estimate\\n\\\\begin{equation*} \\\\frac{1}{\\\\mathrm{Vol}(S)} \\\\int_S \\\\Big| p_t(x,x) -\\\\frac{1}{\\\\mathrm{Vol}(S)}\\n\\\\Big | ~dx \\\\leq C \\\\sqrt{ \\\\frac{I(S)}{t}} \\\\qquad \\\\forall t \\\\geq 1 \\\\, ,\\n\\\\end{equation*} where $C<\\\\infty$ is some universal constant. These bounds are\\noptimal in the sense that for every $g\\\\geq 2$ there exists a compact hyperbolic\\nsurface of genus $g$ satisfying the reverse inequalities with different\\nconstants.\",\"PeriodicalId\":501373,\"journal\":{\"name\":\"arXiv - MATH - Spectral Theory\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Spectral Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.21780\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Spectral Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.21780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A sharp lower bound on the small eigenvalues of surfaces
Let $S$ be a compact hyperbolic surface of genus $g\geq 2$ and let $I(S) =
\frac{1}{\mathrm{Vol}(S)}\int_{S} \frac{1}{\mathrm{Inj}(x)^2 \wedge 1} dx$,
where $\mathrm{Inj}(x)$ is the injectivity radius at $x$. We prove that for any
$k\in \{1,\ldots, 2g-3\}$, the $k$-th eigenvalue $\lambda_k$ of the Laplacian
satisfies \begin{equation*} \lambda_k \geq \frac{c k^2}{I(S) g^2} \, , \end{equation*} where $c>0$ is
some universal constant. We use this bound to prove the heat kernel estimate
\begin{equation*} \frac{1}{\mathrm{Vol}(S)} \int_S \Big| p_t(x,x) -\frac{1}{\mathrm{Vol}(S)}
\Big | ~dx \leq C \sqrt{ \frac{I(S)}{t}} \qquad \forall t \geq 1 \, ,
\end{equation*} where $C<\infty$ is some universal constant. These bounds are
optimal in the sense that for every $g\geq 2$ there exists a compact hyperbolic
surface of genus $g$ satisfying the reverse inequalities with different
constants.