卡诺群中不连续汉密尔顿-雅可比方程的 Monge 解决方案

Fares Essebei, Gianmarco Giovannardi, Simone Verzellesi
{"title":"卡诺群中不连续汉密尔顿-雅可比方程的 Monge 解决方案","authors":"Fares Essebei, Gianmarco Giovannardi, Simone Verzellesi","doi":"10.1007/s00030-024-00983-y","DOIUrl":null,"url":null,"abstract":"<p>In this paper we study Monge solutions to stationary Hamilton–Jacobi equations associated to discontinuous Hamiltonians in the framework of Carnot groups. After showing the equivalence between Monge and viscosity solutions in the continuous setting, we prove existence and uniqueness for the Dirichlet problem, together with a comparison principle and a stability result.</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"217 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monge solutions for discontinuous Hamilton-Jacobi equations in Carnot groups\",\"authors\":\"Fares Essebei, Gianmarco Giovannardi, Simone Verzellesi\",\"doi\":\"10.1007/s00030-024-00983-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we study Monge solutions to stationary Hamilton–Jacobi equations associated to discontinuous Hamiltonians in the framework of Carnot groups. After showing the equivalence between Monge and viscosity solutions in the continuous setting, we prove existence and uniqueness for the Dirichlet problem, together with a comparison principle and a stability result.</p>\",\"PeriodicalId\":501665,\"journal\":{\"name\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"volume\":\"217 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00030-024-00983-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-024-00983-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文在卡诺群的框架内研究了与非连续哈密顿相关的静态哈密顿-雅可比方程的 Monge 解。在证明连续环境中 Monge 解与粘性解的等价性之后,我们证明了 Dirichlet 问题的存在性和唯一性,以及比较原理和稳定性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Monge solutions for discontinuous Hamilton-Jacobi equations in Carnot groups

Monge solutions for discontinuous Hamilton-Jacobi equations in Carnot groups

In this paper we study Monge solutions to stationary Hamilton–Jacobi equations associated to discontinuous Hamiltonians in the framework of Carnot groups. After showing the equivalence between Monge and viscosity solutions in the continuous setting, we prove existence and uniqueness for the Dirichlet problem, together with a comparison principle and a stability result.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信