不规则圆柱体和球体轧制过程中的相变

Daoyuan Qian, Yeonsu Jung, L. Mahadevan
{"title":"不规则圆柱体和球体轧制过程中的相变","authors":"Daoyuan Qian, Yeonsu Jung, L. Mahadevan","doi":"arxiv-2407.19861","DOIUrl":null,"url":null,"abstract":"When placed on an inclined plane, a perfect 2D disk or 3D sphere simply rolls\ndown in a straight line under gravity. But how is the rolling affected if these\nshapes are irregular or random? Treating the terminal rolling speed as an order\nparameter, we show that phase transitions arise as a function of the dimension\nof the state space and inertia. We calculate the scaling exponents and the\nmacroscopic lag time associated with the presence of first and second order\ntransitions, and describe the regimes of co-existence of stable states and the\naccompanying hysteresis. Experiments with rolling cylinders corroborate our\ntheoretical results on the scaling of the lag time. Experiments with spheres\nreveal closed orbits and their period-doubling in the overdamped and inertial\nlimits respectively, providing visible manifestations of the hairy ball theorem\nand the doubly-connected nature of SO(3), the space of 3-dimensional rotations.\nGoing beyond simple curiosity, our study might be relevant in a number of\nnatural and artificial systems that involve the rolling of irregular objects,\nin systems ranging from nanoscale cellular transport to robotics.","PeriodicalId":501482,"journal":{"name":"arXiv - PHYS - Classical Physics","volume":"75 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase transitions in rolling of irregular cylinders and spheres\",\"authors\":\"Daoyuan Qian, Yeonsu Jung, L. Mahadevan\",\"doi\":\"arxiv-2407.19861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When placed on an inclined plane, a perfect 2D disk or 3D sphere simply rolls\\ndown in a straight line under gravity. But how is the rolling affected if these\\nshapes are irregular or random? Treating the terminal rolling speed as an order\\nparameter, we show that phase transitions arise as a function of the dimension\\nof the state space and inertia. We calculate the scaling exponents and the\\nmacroscopic lag time associated with the presence of first and second order\\ntransitions, and describe the regimes of co-existence of stable states and the\\naccompanying hysteresis. Experiments with rolling cylinders corroborate our\\ntheoretical results on the scaling of the lag time. Experiments with spheres\\nreveal closed orbits and their period-doubling in the overdamped and inertial\\nlimits respectively, providing visible manifestations of the hairy ball theorem\\nand the doubly-connected nature of SO(3), the space of 3-dimensional rotations.\\nGoing beyond simple curiosity, our study might be relevant in a number of\\nnatural and artificial systems that involve the rolling of irregular objects,\\nin systems ranging from nanoscale cellular transport to robotics.\",\"PeriodicalId\":501482,\"journal\":{\"name\":\"arXiv - PHYS - Classical Physics\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Classical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.19861\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Classical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.19861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当把一个完美的二维圆盘或三维球体放在斜面上时,在重力的作用下,它们会沿着一条直线滚落。但是,如果形状不规则或随机,滚动会受到什么影响呢?我们将最终滚动速度视为阶次参数,结果表明,相变是状态空间维度和惯性的函数。我们计算了与存在一阶和二阶转变相关的缩放指数和微观滞后时间,并描述了稳定状态和伴随滞后的共存状态。滚动圆柱体实验证实了我们关于滞后时间缩放的理论结果。用球体进行的实验分别揭示了过阻尼和惯性极限的闭合轨道及其周期加倍,为毛球定理和三维旋转空间 SO(3) 的双连接性质提供了可见的表现形式。除了简单的好奇心之外,我们的研究还可能与许多涉及不规则物体滚动的自然和人工系统相关,这些系统包括从纳米级细胞运输到机器人技术的各种系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phase transitions in rolling of irregular cylinders and spheres
When placed on an inclined plane, a perfect 2D disk or 3D sphere simply rolls down in a straight line under gravity. But how is the rolling affected if these shapes are irregular or random? Treating the terminal rolling speed as an order parameter, we show that phase transitions arise as a function of the dimension of the state space and inertia. We calculate the scaling exponents and the macroscopic lag time associated with the presence of first and second order transitions, and describe the regimes of co-existence of stable states and the accompanying hysteresis. Experiments with rolling cylinders corroborate our theoretical results on the scaling of the lag time. Experiments with spheres reveal closed orbits and their period-doubling in the overdamped and inertial limits respectively, providing visible manifestations of the hairy ball theorem and the doubly-connected nature of SO(3), the space of 3-dimensional rotations. Going beyond simple curiosity, our study might be relevant in a number of natural and artificial systems that involve the rolling of irregular objects, in systems ranging from nanoscale cellular transport to robotics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信