连续介质力学中的隐蔽凸性,应用于经典、连续时间、速率(不)相关塑性

IF 1.7 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Amit Acharya
{"title":"连续介质力学中的隐蔽凸性,应用于经典、连续时间、速率(不)相关塑性","authors":"Amit Acharya","doi":"10.1177/10812865241258154","DOIUrl":null,"url":null,"abstract":"A methodology for defining variational principles for a class of PDE (partial differential equations) models from continuum mechanics is demonstrated, and some of its features are explored. The scheme is applied to quasi-static and dynamic models of rate-independent and rate-dependent, single-crystal plasticity at finite deformation.","PeriodicalId":49854,"journal":{"name":"Mathematics and Mechanics of Solids","volume":"78 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hidden convexity in continuum mechanics, with application to classical, continuous-time, rate-(in)dependent plasticity\",\"authors\":\"Amit Acharya\",\"doi\":\"10.1177/10812865241258154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A methodology for defining variational principles for a class of PDE (partial differential equations) models from continuum mechanics is demonstrated, and some of its features are explored. The scheme is applied to quasi-static and dynamic models of rate-independent and rate-dependent, single-crystal plasticity at finite deformation.\",\"PeriodicalId\":49854,\"journal\":{\"name\":\"Mathematics and Mechanics of Solids\",\"volume\":\"78 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics and Mechanics of Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/10812865241258154\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Mechanics of Solids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10812865241258154","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

展示了一种为连续介质力学中的一类 PDE(偏微分方程)模型定义变分原理的方法,并探讨了其中的一些特点。该方案被应用于有限变形下与速率无关和与速率有关的单晶塑性的准静态和动态模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A hidden convexity in continuum mechanics, with application to classical, continuous-time, rate-(in)dependent plasticity
A methodology for defining variational principles for a class of PDE (partial differential equations) models from continuum mechanics is demonstrated, and some of its features are explored. The scheme is applied to quasi-static and dynamic models of rate-independent and rate-dependent, single-crystal plasticity at finite deformation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematics and Mechanics of Solids
Mathematics and Mechanics of Solids 工程技术-材料科学:综合
CiteScore
4.80
自引率
19.20%
发文量
159
审稿时长
1 months
期刊介绍: Mathematics and Mechanics of Solids is an international peer-reviewed journal that publishes the highest quality original innovative research in solid mechanics and materials science. The central aim of MMS is to publish original, well-written and self-contained research that elucidates the mechanical behaviour of solids with particular emphasis on mathematical principles. This journal is a member of the Committee on Publication Ethics (COPE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信